Myklatun Ahne, Lauri Antonella, Eder Stephan H K, Cappetta Michele, Shcherbakov Denis, Wurst Wolfgang, Winklhofer Michael, Westmeyer Gil G
Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
Nat Commun. 2018 Feb 23;9(1):802. doi: 10.1038/s41467-018-03090-6.
An impediment to a mechanistic understanding of how some species sense the geomagnetic field ("magnetoreception") is the lack of vertebrate genetic models that exhibit well-characterized magnetoreceptive behavior and are amenable to whole-brain analysis. We investigated the genetic model organisms zebrafish and medaka, whose young stages are transparent and optically accessible. In an unfamiliar environment, adult fish orient according to the directional change of a magnetic field even in darkness. To enable experiments also in juveniles, we applied slowly oscillating magnetic fields, aimed at generating conflicting sensory inputs during exploratory behavior. Medaka (but not zebrafish) increase their locomotor activity in this assay. Complementary brain activity mapping reveals neuronal activation in the lateral hindbrain during magnetic stimulation. These comparative data support magnetoreception in teleosts, provide evidence for a light-independent mechanism, and demonstrate the usefulness of zebrafish and medaka as genetic vertebrate models for studying the biophysical and neuronal mechanisms underlying magnetoreception.
对于理解某些物种如何感知地磁场(“磁感受”)的机制而言,一个障碍是缺乏表现出特征明确的磁感受行为且适合进行全脑分析的脊椎动物遗传模型。我们研究了遗传模型生物斑马鱼和青鳉,它们的幼体阶段是透明的且可通过光学手段观察。在不熟悉的环境中,成年鱼即使在黑暗中也会根据磁场的方向变化进行定向。为了也能在幼体中进行实验,我们应用了缓慢振荡的磁场,旨在在探索行为期间产生相互冲突的感觉输入。在这个实验中,青鳉(但不是斑马鱼)会增加其运动活性。互补的脑活动图谱显示在磁刺激期间后脑外侧有神经元激活。这些比较数据支持硬骨鱼中的磁感受,为不依赖光的机制提供了证据,并证明了斑马鱼和青鳉作为研究磁感受背后生物物理和神经元机制的脊椎动物遗传模型的有用性。