Suppr超能文献

利用人类遗传和不良结局途径(AOP)数据为人类健康风险评估中的易感性提供信息。

Leveraging human genetic and adverse outcome pathway (AOP) data to inform susceptibility in human health risk assessment.

作者信息

Mortensen Holly M, Chamberlin John, Joubert Bonnie, Angrish Michelle, Sipes Nisha, Lee Janice S, Euling Susan Y

机构信息

NHEERL, US Environmental Protection Agency, Research Triangle Park, NC, 27709, USA.

Oak Ridge Associated Universities, Research Triangle Park, NC, 27709, USA.

出版信息

Mamm Genome. 2018 Feb;29(1-2):190-204. doi: 10.1007/s00335-018-9738-7. Epub 2018 Feb 23.

Abstract

Estimation of susceptibility differences in human health risk assessment (HHRA) has been challenged by a lack of available susceptibility and variability data after exposure to a specific environmental chemical or pharmaceutical. With the increasingly large number of available data sources that contain polymorphism and other genetic data, human genetic variability that informs susceptibility can be better incorporated into HHRA. A recent policy, the 2016 The Frank R. Lautenberg Chemical Safety for the twenty-first Century Act, requires the US Environmental Protection Agency to evaluate new and existing toxic chemicals with explicit consideration of susceptible populations of all types (life stage, exposure, genetic, etc.). We propose using the adverse outcome pathway (AOP) construct to organize, identify, and characterize human genetic susceptibility in HHRA. We explore how publicly available human genetic datasets can be used to gain mechanistic understanding of molecular events and characterize human susceptibility for an adverse outcome. We present a computational method that implements publicly available human genetic data to prioritize AOPs with potential for human genetic variability. We describe the application of this approach across multiple described AOPs for health outcomes of interest, and by focusing on a single molecular initiating event. This contributes to a long-term goal to improve estimates of human susceptibility for use in HHRA for single and multiple chemicals.

摘要

在人类健康风险评估(HHRA)中,由于缺乏接触特定环境化学物质或药物后的易感性和变异性数据,对易感性差异的评估一直面临挑战。随着包含多态性和其他遗传数据的可用数据源数量日益增多,可用于了解易感性的人类遗传变异性能够更好地纳入HHRA。最近的一项政策,即2016年的《弗兰克·R·劳滕伯格21世纪化学安全法案》,要求美国环境保护局在评估新的和现有的有毒化学物质时,明确考虑所有类型的易感人群(生命阶段、接触情况、遗传因素等)。我们建议使用不良结局途径(AOP)框架来组织、识别和描述HHRA中的人类遗传易感性。我们探讨如何利用公开可用的人类遗传数据集来深入了解分子事件的机制,并描述针对不良结局的人类易感性。我们提出一种计算方法,该方法利用公开可用的人类遗传数据对具有人类遗传变异性潜力的AOP进行优先级排序。我们描述了这种方法在多个针对感兴趣的健康结局的已描述AOP中的应用,并重点关注单个分子起始事件。这有助于实现一个长期目标,即改进在HHRA中用于单一和多种化学物质的人类易感性估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9952/9074075/212016cda561/nihms-958853-f0001.jpg

相似文献

6
Semantic characterization of adverse outcome pathways.不良结局途径的语义特征描述。
Aquat Toxicol. 2020 May;222:105478. doi: 10.1016/j.aquatox.2020.105478. Epub 2020 Mar 30.

引用本文的文献

1
Developmental toxicity: artificial intelligence-powered assessments.发育毒性:人工智能驱动的评估
Trends Pharmacol Sci. 2025 Jun;46(6):486-502. doi: 10.1016/j.tips.2025.04.005. Epub 2025 May 15.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验