Suppr超能文献

计算机毒理学:从构效关系到深度学习及不良结局途径。

In silico toxicology: From structure-activity relationships towards deep learning and adverse outcome pathways.

作者信息

Hemmerich Jennifer, Ecker Gerhard F

机构信息

Department of Pharmaceutical Chemistry University of Vienna Vienna Austria.

出版信息

Wiley Interdiscip Rev Comput Mol Sci. 2020 Jul-Aug;10(4):e1475. doi: 10.1002/wcms.1475. Epub 2020 Mar 31.

Abstract

In silico toxicology is an emerging field. It gains increasing importance as research is aiming to decrease the use of animal experiments as suggested in the 3R principles by Russell and Burch. In silico toxicology is a means to identify hazards of compounds before synthesis, and thus in very early stages of drug development. For chemical industries, as well as regulatory agencies it can aid in gap-filling and guide risk minimization strategies. Techniques such as structural alerts, read-across, quantitative structure-activity relationship, machine learning, and deep learning allow to use in silico toxicology in many cases, some even when data is scarce. Especially the concept of adverse outcome pathways puts all techniques into a broader context and can elucidate predictions by mechanistic insights. This article is categorized under:Structure and Mechanism > Computational Biochemistry and BiophysicsData Science > Chemoinformatics.

摘要

计算机毒理学是一个新兴领域。随着研究旨在减少动物实验的使用(如罗素和伯奇提出的3R原则所建议的),它变得越来越重要。计算机毒理学是一种在化合物合成之前,即在药物开发的非常早期阶段识别其危害的手段。对于化学工业以及监管机构而言,它有助于填补空白并指导风险最小化策略。诸如结构警示、类推法、定量构效关系、机器学习和深度学习等技术使得在许多情况下都可以使用计算机毒理学,甚至在数据稀缺时也能如此。特别是不良结局途径的概念将所有技术置于更广泛的背景下,并可以通过机制性见解阐明预测结果。本文分类如下:结构与机制>计算生物化学与生物物理学;数据科学>化学信息学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2530/9286356/038bda472b94/WCMS-10-0-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验