Brain Imaging & Modeling Section, National Institute on Deafness & Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
Brain Imaging & Modeling Section, National Institute on Deafness & Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA; Neural Bytes, LLC, Washington, DC, USA.
Neuroimage. 2018 Jun;173:199-222. doi: 10.1016/j.neuroimage.2018.02.037. Epub 2018 Feb 22.
Invasive electrophysiological and neuroanatomical studies in nonhuman mammalian experimental preparations have helped elucidate the lamina (layer) dependence of neural computations and interregional connections. Noninvasive functional neuroimaging can, in principle, resolve cortical laminae (layers), and thus provide insight into human neural computations and interregional connections. However human neuroimaging data are noisy and difficult to interpret; biologically realistic simulations can aid experimental interpretation by relating the neuroimaging data to simulated neural activity. We illustrate the potential of laminar neuroimaging by upgrading an existing large-scale, multiregion neural model that simulates a visual delayed match-to-sample (DMS) task. The new laminar-based neural unit incorporates spiny stellate, pyramidal, and inhibitory neural populations which are divided among supragranular, granular, and infragranular laminae (layers). We simulated neural activity which is translated into local field potential-like data used to simulate conventional and laminar fMRI activity. We implemented the laminar connectivity schemes proposed by Felleman and Van Essen (Cerebral Cortex, 1991) for interregional connections. The hemodynamic model that we employ is a modified version of one due to Heinzle et al. (Neuroimage, 2016) that incorporates the effects of draining veins. We show that the laminar version of the model replicates the findings of the existing model. The laminar model shows the finer structure in fMRI activity and functional connectivity. Laminar differences in the magnitude of neural activities are a prominent finding; these are also visible in the simulated fMRI. We illustrate differences between task and control conditions in the fMRI signal, and demonstrate differences in interregional laminar functional connectivity that reflect the underlying connectivity scheme. These results indicate that multi-layer computational models can aid in interpreting layer-specific fMRI, and suggest that increased use of laminar fMRI could provide unique and fundamental insights to human neuroscience.
在非人类哺乳动物实验制剂中进行的侵入性电生理和神经解剖学研究有助于阐明神经计算和区域间连接的层(层)依赖性。原则上,非侵入性功能神经影像学可以分辨皮层层(层),从而深入了解人类神经计算和区域间连接。然而,人类神经影像学数据存在噪声且难以解释;生物上合理的模拟可以通过将神经影像学数据与模拟神经活动相关联来帮助实验解释。我们通过升级现有的大规模多区域神经模型来演示层神经影像学的潜力,该模型模拟了视觉延迟匹配样本(DMS)任务。新的基于层的神经单元包含棘星形、锥体和抑制性神经元群体,这些群体分布在超颗粒、颗粒和亚颗粒层(层)中。我们模拟了神经活动,将其转化为局部场电位样数据,用于模拟常规和层 fMRI 活动。我们实现了 Felleman 和 Van Essen(Cerebral Cortex,1991)提出的用于区域间连接的层连接方案。我们采用的血流动力学模型是 Heinzle 等人(Neuroimage,2016)提出的模型的一个修改版本,该模型包含引流静脉的影响。我们表明,模型的层版本复制了现有模型的发现。层模型显示了 fMRI 活动和功能连接的更精细结构。神经活动幅度的层差异是一个突出的发现;这些也在模拟 fMRI 中可见。我们说明了 fMRI 信号中任务和对照条件之间的差异,并证明了反映潜在连接方案的区域间层功能连接的差异。这些结果表明,多层计算模型可以帮助解释特定于层的 fMRI,并且表明增加使用层 fMRI 可以为人类神经科学提供独特和基本的见解。