National Institutes of Health, Bethesda, MD.
University of Maryland.
J Cogn Neurosci. 2017 Nov;29(11):1860-1876. doi: 10.1162/jocn_a_01163. Epub 2017 Jul 7.
Many cognitive and computational models have been proposed to help understand working memory. In this article, we present a simulation study of cortical processing of visual objects during several working memory tasks using an extended version of a previously constructed large-scale neural model [Tagamets, M. A., & Horwitz, B. Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cerebral Cortex, 8, 310-320, 1998]. The original model consisted of arrays of Wilson-Cowan type of neuronal populations representing primary and secondary visual cortices, inferotemporal (IT) cortex, and pFC. We added a module representing entorhinal cortex, which functions as a gating module. We successfully implemented multiple working memory tasks using the same model and produced neuronal patterns in visual cortex, IT cortex, and pFC that match experimental findings. These working memory tasks can include distractor stimuli or can require that multiple items be retained in mind during a delay period (Sternberg's task). Besides electrophysiology data and behavioral data, we also generated fMRI BOLD time series from our simulation. Our results support the involvement of IT cortex in working memory maintenance and suggest the cortical architecture underlying the neural mechanisms mediating particular working memory tasks. Furthermore, we noticed that, during simulations of memorizing a list of objects, the first and last items in the sequence were recalled best, which may implicate the neural mechanism behind this important psychological effect (i.e., the primacy and recency effect).
许多认知和计算模型已经被提出,以帮助理解工作记忆。在本文中,我们使用之前构建的一个大规模神经模型的扩展版本,对视觉对象在几个工作记忆任务中的皮层处理进行了模拟研究[Tagamets, M. A., & Horwitz, B. 通过整合电生理和解剖学实验数据来创建一个大规模模型,该模型模拟了延迟匹配样本的人类脑成像研究。大脑皮层,8, 310-320, 1998]。原始模型由代表初级和次级视觉皮层、下颞叶(IT)皮层和 pFC 的威尔逊-考恩型神经元群体的阵列组成。我们添加了一个代表内嗅皮层的模块,它作为门控模块。我们使用相同的模型成功地实现了多个工作记忆任务,并在视觉皮层、IT 皮层和 pFC 中产生了与实验发现相匹配的神经元模式。这些工作记忆任务可以包括干扰刺激,也可以要求在延迟期间记住多个项目(斯特恩伯格任务)。除了电生理学数据和行为数据外,我们还从模拟中生成了 fMRI BOLD 时间序列。我们的结果支持 IT 皮层在工作记忆维持中的作用,并提出了介导特定工作记忆任务的神经机制的皮层结构。此外,我们注意到,在记忆一系列物体的模拟过程中,序列中的第一个和最后一个项目被回忆得最好,这可能暗示了这种重要心理效应背后的神经机制(即首因和近因效应)。