Department of Mathematical Sciences, Florida Atlantic University, Science Building, Room 234, 777 Glades Road, Boca Raton, FL 33431, USA.
Department of Mathematics, University of Tulsa, 800 S Tucker Drive, Tulsa, OK 74104, USA.
Math Biosci. 2018 May;299:1-18. doi: 10.1016/j.mbs.2018.02.004. Epub 2018 Mar 29.
Estimating the reproduction number of an emerging infectious disease from an epidemiological data is becoming more essential in evaluating the current status of an outbreak. However, these studies are lacking the fundamental prerequisite in parameter estimation problem, namely the structural identifiability of the epidemic model, which determines the possibility of uniquely determining the model parameters from the epidemic data. In this paper, we perform both structural and practical identifiability analysis to classical epidemic models such as SIR (Susceptible-Infected-Recovered), SEIR (Susceptible-Exposed-Infected-Recovered) and an epidemic model with the treatment class (SITR). We performed structural identifiability analysis on these epidemic models using a differential algebra approach to investigate the well-posedness of the parameter estimation problem. Parameters of these models are estimated from different data types, namely prevalence, cumulative incidences and treated individuals. Furthermore, we carried out practical identifiability analysis on these models using Monte Carlo simulations and Fisher's Information Matrix. Our study shows that the SIR model is both structurally and practically identifiable from the prevalence data. It is also structurally identifiable to cumulative incidence observations, but due to high correlations of the parameters, it is practically unidentifiable from the cumulative incidence data. Furthermore, we found that none of these simple epidemic models are practically identifiable from the cumulative incidence data which is the standard type of epidemiological data provided by CDC or WHO. Our analysis with simple SIR model suggest that the health agencies, if possible, should report prevalence rather than incidence data.
从流行病学数据中估计新发传染病的繁殖数对于评估疫情现状变得越来越重要。然而,这些研究缺乏参数估计问题的基本前提,即传染病模型的结构可识别性,这决定了从流行病学数据中唯一确定模型参数的可能性。在本文中,我们对 SIR(易感-感染-恢复)、SEIR(易感-暴露-感染-恢复)和具有治疗类别的传染病模型(SITR)等经典传染病模型进行了结构和实际可识别性分析。我们使用微分代数方法对这些传染病模型进行结构可识别性分析,以研究参数估计问题的适定性。这些模型的参数可以从不同的数据类型中估计,即患病率、累积发病率和治疗个体。此外,我们还使用蒙特卡罗模拟和 Fisher 信息矩阵对这些模型进行了实际可识别性分析。我们的研究表明,SIR 模型从患病率数据来看是结构上和实际上可识别的。它也可以从累积发病率观测中结构上识别,但由于参数之间的高度相关性,从累积发病率数据中实际不可识别。此外,我们发现这些简单的传染病模型都无法从累积发病率数据中实际识别,而累积发病率数据是 CDC 或 WHO 提供的标准类型的流行病学数据。我们对简单的 SIR 模型的分析表明,如果可能的话,卫生机构应该报告患病率而不是发病率数据。