Suppr超能文献

基于微分方程的传染病模型结构可识别性分析:基于教程的入门介绍。

Structural identifiability analysis of epidemic models based on differential equations: a tutorial-based primer.

机构信息

School of Public Health, Georgia State University, Atlanta, GA, USA.

Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, USA.

出版信息

J Math Biol. 2023 Nov 3;87(6):79. doi: 10.1007/s00285-023-02007-2.

Abstract

The successful application of epidemic models hinges on our ability to estimate model parameters from limited observations reliably. An often-overlooked step before estimating model parameters consists of ensuring that the model parameters are structurally identifiable from the observed states of the system. In this tutorial-based primer, intended for a diverse audience, including students training in dynamic systems, we review and provide detailed guidance for conducting structural identifiability analysis of differential equation epidemic models based on a differential algebra approach using differential algebra for identifiability of systems (DAISY) and Mathematica (Wolfram Research). This approach aims to uncover any existing parameter correlations that preclude their estimation from the observed variables. We demonstrate this approach through examples, including tutorial videos of compartmental epidemic models previously employed to study transmission dynamics and control. We show that the lack of structural identifiability may be remedied by incorporating additional observations from different model states, assuming that the system's initial conditions are known, using prior information to fix some parameters involved in parameter correlations, or modifying the model based on existing parameter correlations. We also underscore how the results of structural identifiability analysis can help enrich compartmental diagrams of differential-equation models by indicating the observed state variables and the results of the structural identifiability analysis.

摘要

成功应用传染病模型取决于我们能否从有限的观测数据中可靠地估计模型参数。在估计模型参数之前,通常会忽略一个步骤,即确保从系统的观测状态中可以从结构上识别出模型参数。在这个基于教程的入门指南中,面向的是包括在动态系统方面接受培训的学生在内的不同受众,我们将回顾并提供详细的指导,用于使用基于微分代数的系统可识别性分析工具 (DAISY) 和 Mathematica (Wolfram Research) 基于微分代数的方法,对微分方程传染病模型进行结构可识别性分析。这种方法旨在揭示任何可能存在的参数相关性,这些相关性会阻止从观测变量中对其进行估计。我们通过示例演示了这种方法,包括以前用于研究传播动力学和控制的房室传染病模型的教程视频。我们表明,通过从不同模型状态中添加额外的观测值(假设已知系统的初始条件)、使用先验信息固定涉及参数相关性的一些参数,或者根据现有参数相关性修改模型,结构可识别性分析的结果可能会解决缺乏结构可识别性的问题。我们还强调了结构可识别性分析的结果如何通过指示观测状态变量和结构可识别性分析的结果来丰富微分方程模型的房室图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验