Suppr超能文献

使用全卷积神经网络预测 H&E 染色病理图像中的微血管。

Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks.

机构信息

Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5325 Harry Hines Blvd, Dallas, TX, 75390, USA.

Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100023, P. R. China.

出版信息

BMC Bioinformatics. 2018 Feb 27;19(1):64. doi: 10.1186/s12859-018-2055-z.

Abstract

BACKGROUND

Pathological angiogenesis has been identified in many malignancies as a potential prognostic factor and target for therapy. In most cases, angiogenic analysis is based on the measurement of microvessel density (MVD) detected by immunostaining of CD31 or CD34. However, most retrievable public data is generally composed of Hematoxylin and Eosin (H&E)-stained pathology images, for which is difficult to get the corresponding immunohistochemistry images. The role of microvessels in H&E stained images has not been widely studied due to their complexity and heterogeneity. Furthermore, identifying microvessels manually for study is a labor-intensive task for pathologists, with high inter- and intra-observer variation. Therefore, it is important to develop automated microvessel-detection algorithms in H&E stained pathology images for clinical association analysis.

RESULTS

In this paper, we propose a microvessel prediction method using fully convolutional neural networks. The feasibility of our proposed algorithm is demonstrated through experimental results on H&E stained images. Furthermore, the identified microvessel features were significantly associated with the patient clinical outcomes.

CONCLUSIONS

This is the first study to develop an algorithm for automated microvessel detection in H&E stained pathology images.

摘要

背景

病理性血管生成已在许多恶性肿瘤中被确定为一种潜在的预后因素和治疗靶点。在大多数情况下,血管生成分析基于免疫组织化学染色 CD31 或 CD34 检测到的微血管密度(MVD)的测量。然而,大多数可检索的公共数据通常由苏木精和伊红(H&E)染色的病理图像组成,很难获得相应的免疫组化图像。由于其复杂性和异质性,H&E 染色图像中小血管的作用尚未得到广泛研究。此外,由于手动识别微血管对于病理学家来说是一项劳动强度大的任务,因此存在很高的观察者间和观察者内变异性。因此,为了进行临床关联分析,在 H&E 染色的病理图像中开发自动化的微血管检测算法非常重要。

结果

本文提出了一种使用全卷积神经网络的微血管预测方法。通过对 H&E 染色图像的实验结果证明了我们提出的算法的可行性。此外,所识别的微血管特征与患者的临床结局显著相关。

结论

这是第一项开发用于 H&E 染色病理图像中自动化微血管检测的算法的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3112/5828328/afc306b393f3/12859_2018_2055_Fig1_HTML.jpg

相似文献

1
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks.
BMC Bioinformatics. 2018 Feb 27;19(1):64. doi: 10.1186/s12859-018-2055-z.
2
Microvessel area using automated image analysis is reproducible and is associated with prognosis in breast cancer.
Hum Pathol. 2009 Feb;40(2):156-65. doi: 10.1016/j.humpath.2008.07.005. Epub 2008 Sep 16.
3
Microvessel quantification by fully convolutional neural networks associated with type 2 inflammation in chronic rhinosinusitis.
Ann Allergy Asthma Immunol. 2022 Jun;128(6):697-704.e1. doi: 10.1016/j.anai.2022.02.025. Epub 2022 Mar 4.
6
Morphometric study of nuclei and microvessels in gliomas and its correlation with grades.
Microvasc Res. 2014 May;93:52-61. doi: 10.1016/j.mvr.2014.03.002. Epub 2014 Mar 19.
7
Fully automated quantitative assessment of hepatic steatosis in liver transplants.
Comput Biol Med. 2020 Aug;123:103836. doi: 10.1016/j.compbiomed.2020.103836. Epub 2020 May 29.
8
Morphometric study of microvessels in primary CNS tumors and its correlation with tumor types and grade.
Microvasc Res. 2012 Jul;84(1):34-43. doi: 10.1016/j.mvr.2012.03.004. Epub 2012 Mar 23.

引用本文的文献

1
Applying machine learning to assist in the morphometric assessment of brain arteriolosclerosis through automation.
Free Neuropathol. 2025 Jun 2;6:12. doi: 10.17879/freeneuropathology-2025-6387. eCollection 2025.
2
Assessing the Impact of Partial Decellularization on Tracheal Chondrocytes and Extracellular Matrix in Airway Reconstruction.
Otolaryngol Head Neck Surg. 2025 Jun;172(6):2026-2037. doi: 10.1002/ohn.1211. Epub 2025 Mar 21.
3
3,3'-Diindolylmethane improves pathology and neurological outcome following traumatic brain injury.
Neurotherapeutics. 2025 Mar;22(2):e00531. doi: 10.1016/j.neurot.2025.e00531. Epub 2025 Feb 4.
5
Serous Ovarian Carcinoma: Detailed Analysis of Clinico-Pathological Characteristics as Prognostic Factors.
Cancers (Basel). 2024 Oct 25;16(21):3611. doi: 10.3390/cancers16213611.
6
LVI-PathNet: Segmentation-classification pipeline for detection of lymphovascular invasion in whole slide images of lung adenocarcinoma.
J Pathol Inform. 2024 Aug 30;15:100395. doi: 10.1016/j.jpi.2024.100395. eCollection 2024 Dec.
7
PI-YOLO: dynamic sparse attention and lightweight convolutional based YOLO for vessel detection in pathological images.
Front Oncol. 2024 Jul 29;14:1347123. doi: 10.3389/fonc.2024.1347123. eCollection 2024.
8
ML-driven segmentation of microvascular features during histological examination of tissue-engineered vascular grafts.
Front Bioeng Biotechnol. 2024 Jun 26;12:1411680. doi: 10.3389/fbioe.2024.1411680. eCollection 2024.

本文引用的文献

1
Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming.
Nature. 2017 Apr 13;544(7649):250-254. doi: 10.1038/nature21724. Epub 2017 Apr 3.
3
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
5
Comprehensive Computational Pathological Image Analysis Predicts Lung Cancer Prognosis.
J Thorac Oncol. 2017 Mar;12(3):501-509. doi: 10.1016/j.jtho.2016.10.017. Epub 2016 Nov 4.
7
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
8
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
9
Nuclear smears observed in H&E-stained thrombus sections are neutrophil extracellular traps.
J Clin Pathol. 2016 Feb;69(2):181-2. doi: 10.1136/jclinpath-2015-203019. Epub 2015 Jul 23.
10
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验