Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, VC14-215, 10032, USA.
Department of Radiation Physics, Atlantic Health System, New Jersey, NJ, USA.
J Transl Med. 2024 Jul 8;22(1):640. doi: 10.1186/s12967-024-05394-2.
The tumor microenvironment (TME) plays a key role in lung cancer initiation, proliferation, invasion, and metastasis. Artificial intelligence (AI) methods could potentially accelerate TME analysis. The aims of this study were to (1) assess the feasibility of using hematoxylin and eosin (H&E)-stained whole slide images (WSI) to develop an AI model for evaluating the TME and (2) to characterize the TME of adenocarcinoma (ADCA) and squamous cell carcinoma (SCCA) in fibrotic and non-fibrotic lung.
The cohort was derived from chest CT scans of patients presenting with lung neoplasms, with and without background fibrosis. WSI images were generated from slides of all 76 available pathology cases with ADCA (n = 53) or SCCA (n = 23) in fibrotic (n = 47) or non-fibrotic (n = 29) lung. Detailed ground-truth annotations, including of stroma (i.e., fibrosis, vessels, inflammation), necrosis and background, were performed on WSI and optimized via an expert-in-the-loop (EITL) iterative procedure using a lightweight [random forest (RF)] classifier. A convolution neural network (CNN)-based model was used to achieve tissue-level multiclass segmentation. The model was trained on 25 annotated WSI from 13 cases of ADCA and SCCA within and without fibrosis and then applied to the 76-case cohort. The TME analysis included tumor stroma ratio (TSR), tumor fibrosis ratio (TFR), tumor inflammation ratio (TIR), tumor vessel ratio (TVR), tumor necrosis ratio (TNR), and tumor background ratio (TBR).
The model's overall classification for precision, sensitivity, and F1-score were 94%, 90%, and 91%, respectively. Statistically significant differences were noted in TSR (p = 0.041) and TFR (p = 0.001) between fibrotic and non-fibrotic ADCA. Within fibrotic lung, statistically significant differences were present in TFR (p = 0.039), TIR (p = 0.003), TVR (p = 0.041), TNR (p = 0.0003), and TBR (p = 0.020) between ADCA and SCCA.
The combined EITL-RF CNN model using only H&E WSI can facilitate multiclass evaluation and quantification of the TME. There are significant differences in the TME of ADCA and SCCA present within or without background fibrosis. Future studies are needed to determine the significance of TME on prognosis and treatment.
肿瘤微环境(TME)在肺癌的发生、增殖、侵袭和转移中起着关键作用。人工智能(AI)方法可能会加速 TME 分析。本研究的目的是:(1)评估使用苏木精和伊红(H&E)染色的全切片图像(WSI)来开发用于评估 TME 的 AI 模型的可行性;(2)对纤维化和非纤维化肺中的腺癌(ADCA)和鳞状细胞癌(SCCA)的 TME 进行特征描述。
该队列来自于有和没有背景纤维化的肺癌患者的胸部 CT 扫描。从 76 例有 ADCA(n=53)或 SCCA(n=23)的病理切片中生成 WSI 图像,这些切片位于纤维化(n=47)或非纤维化(n=29)肺中。在 WSI 上进行了详细的基于地面实况的注释,包括基质(即纤维化、血管、炎症)、坏死和背景,并通过使用轻量级[随机森林(RF)]分类器的专家在回路(EITL)迭代过程进行了优化。使用基于卷积神经网络(CNN)的模型实现了组织级别的多类分割。该模型在纤维化和非纤维化 ADCA 和 SCCA 内和内的 25 个注释 WSI 上进行了训练,然后应用于 76 例病例队列。TME 分析包括肿瘤基质比(TSR)、肿瘤纤维化比(TFR)、肿瘤炎症比(TIR)、肿瘤血管比(TVR)、肿瘤坏死比(TNR)和肿瘤背景比(TBR)。
该模型的整体分类精度、敏感性和 F1 评分分别为 94%、90%和 91%。纤维化 ADCA 中 TSR(p=0.041)和 TFR(p=0.001)存在统计学显著差异。在纤维化肺中,TFR(p=0.039)、TIR(p=0.003)、TVR(p=0.041)、TNR(p=0.0003)和 TBR(p=0.020)在 ADCA 和 SCCA 之间存在统计学显著差异。
仅使用 H&E WSI 的结合 EITL-RF CNN 模型可以促进 TME 的多类评估和量化。纤维化或非纤维化背景内 ADCA 和 SCCA 的 TME 存在显著差异。需要进一步的研究来确定 TME 对预后和治疗的意义。