Suppr超能文献

小鼠新皮层中由瞬时受体电位香草酸亚家族成员8(TrpM8)介导的躯体感觉

TrpM8-mediated somatosensation in mouse neocortex.

作者信息

Beukema Patrick, Cecil Katherine L, Peterson Elena, Mann Victor R, Matsushita Megumi, Takashima Yoshio, Navlakha Saket, Barth Alison L

机构信息

Department of Neuroscience, Center for Neuroscience at the University of Pittsburgh, Pittsburgh, Pennsylvania, 15260.

Baylor College of Medicine, Houston, Texas, 77030.

出版信息

J Comp Neurol. 2018 Jun 15;526(9):1444-1456. doi: 10.1002/cne.24418. Epub 2018 Mar 25.

Abstract

Somatosensation is a complex sense mediated by more than a dozen distinct neural subtypes in the periphery. Although pressure and touch sensation have been mapped to primary somatosensory cortex in rodents, it has been controversial whether pain and temperature inputs are also directed to this area. Here we use a well-defined somatosensory modality, cool sensation mediated by peripheral TrpM8-receptors, to investigate the neural substrate for cool perception in the mouse neocortex. Using activation of cutaneous TrpM8 receptor-expressing neurons, we identify candidate neocortical areas responsive for cool sensation. Initially, we optimized TrpM8 stimulation and determined that menthol, a selective TrpM8 agonist, was more effective than cool stimulation at inducing expression of the immediate-early gene c-fos in the spinal cord. We developed a broad-scale brain survey method for identification of activated brain areas, using automated methods to quantify c-fos immunoreactivity (fos-IR) across animals. Brain areas corresponding to the posterior insular cortex and secondary somatosensory (S2) show elevated fos-IR after menthol stimulation, in contrast to weaker activation in primary somatosensory cortex (S1). In addition, menthol exposure triggered fos-IR in piriform cortex, the amygdala, and the hypothalamus. Menthol-mediated activation was absent in TrpM8-knock-out animals. Our results indicate that cool somatosensory input broadly drives neural activity across the mouse brain, with neocortical signal most elevated in the posterior insula, as well as S2 and S1. These findings are consistent with data from humans indicating that the posterior insula is specialized for somatosensory information encoding temperature, pain, and gentle touch.

摘要

躯体感觉是一种复杂的感觉,由外周十几种不同的神经亚型介导。尽管在啮齿动物中,压力和触觉已被映射到初级躯体感觉皮层,但疼痛和温度输入是否也指向该区域一直存在争议。在这里,我们使用一种定义明确的躯体感觉模式,即由外周瞬时受体电位香草酸亚型8(TrpM8)受体介导的冷觉,来研究小鼠新皮层中冷觉感知的神经基础。通过激活表达皮肤TrpM8受体的神经元,我们确定了对冷觉有反应的候选新皮层区域。最初,我们优化了TrpM8刺激,并确定薄荷醇(一种选择性TrpM8激动剂)在诱导脊髓中即刻早期基因c-fos的表达方面比冷刺激更有效。我们开发了一种广泛的脑区调查方法来识别激活的脑区,使用自动化方法量化不同动物的c-fos免疫反应性(fos-IR)。与初级躯体感觉皮层(S1)中较弱的激活相比,薄荷醇刺激后,与后岛叶皮层和次级躯体感觉区(S2)相对应的脑区显示出升高的fos-IR。此外,薄荷醇暴露引发了梨状皮层、杏仁核和下丘脑的fos-IR。在TrpM8基因敲除动物中不存在薄荷醇介导的激活。我们的结果表明,冷躯体感觉输入广泛驱动小鼠大脑中的神经活动,新皮层信号在后岛叶以及S2和S1中升高最为明显。这些发现与来自人类的数据一致,表明后岛叶专门用于编码温度、疼痛和轻触觉的躯体感觉信息。

相似文献

1
TrpM8-mediated somatosensation in mouse neocortex.
J Comp Neurol. 2018 Jun 15;526(9):1444-1456. doi: 10.1002/cne.24418. Epub 2018 Mar 25.
2
Visualizing cold spots: TRPM8-expressing sensory neurons and their projections.
J Neurosci. 2008 Jan 16;28(3):566-75. doi: 10.1523/JNEUROSCI.3976-07.2008.
3
TRPA1 expression levels and excitability brake by K channels influence cold sensitivity of TRPA1-expressing neurons.
Neuroscience. 2017 Jun 14;353:76-86. doi: 10.1016/j.neuroscience.2017.04.001. Epub 2017 Apr 10.
4
The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity.
Mol Pain. 2010 Jan 21;6:4. doi: 10.1186/1744-8069-6-4.
5
Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate.
J Biol Chem. 2009 Jan 16;284(3):1570-82. doi: 10.1074/jbc.M807270200. Epub 2008 Nov 18.
7
Inhibition of TRPM8 by icilin distinct from desensitization induced by menthol and menthol derivatives.
J Biol Chem. 2009 Feb 13;284(7):4102-11. doi: 10.1074/jbc.M806651200. Epub 2008 Dec 18.
8
Quantitative Analysis of Mouse Dural Afferent Neurons Expressing TRPM8, VGLUT3, and NF200.
Headache. 2018 Jan;58(1):88-101. doi: 10.1111/head.13188. Epub 2017 Sep 19.

引用本文的文献

2
Transcriptomic Profile Analysis of Brain Tissue in the Absence of Functional TRPM8 Calcium Channel.
Biomedicines. 2024 Dec 31;13(1):75. doi: 10.3390/biomedicines13010075.
3
The secondary somatosensory cortex gates mechanical and heat sensitivity.
Nat Commun. 2024 Feb 12;15(1):1289. doi: 10.1038/s41467-024-45729-7.
4
Oral thermal processing in the gustatory cortex of awake mice.
Chem Senses. 2023 Jan 1;48. doi: 10.1093/chemse/bjad042.
5
Evoking natural thermal perceptions using a thin-film thermoelectric device with high cooling power density and speed.
Nat Biomed Eng. 2024 Aug;8(8):1004-1017. doi: 10.1038/s41551-023-01070-w. Epub 2023 Jul 27.
6
The cellular coding of temperature in the mammalian cortex.
Nature. 2023 Feb;614(7949):725-731. doi: 10.1038/s41586-023-05705-5. Epub 2023 Feb 8.
7
Brain-wide connectivity map of mouse thermosensory cortices.
Cereb Cortex. 2023 Apr 4;33(8):4870-4885. doi: 10.1093/cercor/bhac386.
8
Activation of peripheral TRPM8 mitigates ischemic stroke by topically applied menthol.
J Neuroinflammation. 2022 Jul 27;19(1):192. doi: 10.1186/s12974-022-02553-4.
9
Neurodegenerative Disease: Roles for Sex, Hormones, and Oxidative Stress.
Endocrinology. 2021 Nov 1;162(11). doi: 10.1210/endocr/bqab185.
10
The neural circuits of thermal perception.
Curr Opin Neurobiol. 2018 Oct;52:98-106. doi: 10.1016/j.conb.2018.04.006. Epub 2018 May 15.

本文引用的文献

1
Identification of the cold receptor TRPM8 in the nasal mucosa.
Am J Rhinol Allergy. 2015 Jul-Aug;29(4):e112-6. doi: 10.2500/ajra.2015.29.4202.
2
Visualizing the engram: learning stabilizes odor representations in the olfactory network.
J Neurosci. 2014 Nov 12;34(46):15394-401. doi: 10.1523/JNEUROSCI.3396-14.2014.
3
A somatosensory circuit for cooling perception in mice.
Nat Neurosci. 2014 Nov;17(11):1560-6. doi: 10.1038/nn.3828. Epub 2014 Sep 28.
4
Insula and sensory insular cortex and somatosensory control in patients with insular stroke.
Eur J Pain. 2014 Nov;18(10):1385-93. doi: 10.1002/j.1532-2149.2014.501.x. Epub 2014 Mar 30.
5
Fine-grained nociceptive maps in primary somatosensory cortex.
J Neurosci. 2012 Nov 28;32(48):17155-62. doi: 10.1523/JNEUROSCI.3059-12.2012.
6
Cortical thickness correlates of pain and temperature sensitivity.
Pain. 2012 Aug;153(8):1602-1609. doi: 10.1016/j.pain.2012.03.012. Epub 2012 Apr 17.
7
Spatial segregation of somato-sensory and pain activations in the human operculo-insular cortex.
Neuroimage. 2012 Mar;60(1):409-18. doi: 10.1016/j.neuroimage.2011.12.072. Epub 2012 Jan 5.
8
The insular cortex: a review.
Prog Brain Res. 2012;195:123-63. doi: 10.1016/B978-0-444-53860-4.00007-6.
9
Localization of pain-related brain activation: a meta-analysis of neuroimaging data.
Hum Brain Mapp. 2013 Jan;34(1):109-49. doi: 10.1002/hbm.21416. Epub 2011 Dec 1.
10
Cortical processing of odor objects.
Neuron. 2011 Nov 17;72(4):506-19. doi: 10.1016/j.neuron.2011.10.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验