Suppr超能文献

Transmembrane gradient and ligand-induced mechanisms of adenosine 5'-triphosphate synthesis by sarcoplasmic reticulum adenosinetriphosphatase.

作者信息

Fernandez-Belda F, Inesi G

出版信息

Biochemistry. 1986 Dec 2;25(24):8083-9. doi: 10.1021/bi00372a043.

Abstract

A series of experiments was performed in order to characterize ATP formation by sarcoplasmic reticulum adenosinetriphosphatase (ATPase). Comparative measurements were obtained by using native and leaky vesicles, in the presence and in the absence of a transmembrane Ca2+ gradient. ATP formation was started by addition of ADP to phosphoenzyme obtained by preincubation with acetyl phosphate and Ca2+ or by addition of ADP and Ca2+ to phosphoenzyme obtained by preincubation with inorganic phosphate (Pi) in the absence of Ca2+. Transient-state measurements were carried out to obtain a kinetic characterization of phosphoenzyme formation following addition of ATP to enzyme preincubated with Ca2+ (10(2) s-1) in the forward direction of the cycle and for ATP formation following addition of ADP to the phosphoenzyme-calcium complex (3 X 10(2) s-1) in the reverse direction of the cycle. The rate constants of ATP association (4.5 X 10(6) M-1) with and dissociation (50 s-1) from the catalytic site were also obtained. A slow (kapp = 20 s-1) step for ATP formation was observed when millimolar Ca2+ and ADP were added to phosphoenzyme obtained with Pi. This demonstrates a transition of this phosphoenzyme to a rapidly reactive state, before the occurrence of phosphoryl transfer to ADP. A match of the ATP hydrolysis and Ca2+ gradient potentials is consistent with ATP formation in the presence of a Ca2+ gradient but does not explain ATP formation in the absence of a gradient. A formulation is then introduced considering all the equilibrium constants for the partial reactions of the ATPase cycle.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验