Suppr超能文献

蜱 evasin 的 N 端结构域对于趋化因子结合和中和至关重要,并赋予其他 evasin 特定的结合活性。

The N-terminal domain of a tick evasin is critical for chemokine binding and neutralization and confers specific binding activity to other evasins.

机构信息

From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine.

the Department of Chemistry, and.

出版信息

J Biol Chem. 2018 Apr 20;293(16):6134-6146. doi: 10.1074/jbc.RA117.000487. Epub 2018 Feb 27.

Abstract

Tick chemokine-binding proteins (evasins) are an emerging class of biologicals that target multiple chemokines and show anti-inflammatory activities in preclinical disease models. Using yeast surface display, we identified a CCL8-binding evasin, P672, from the tick We found that P672 binds CCL8 and eight other CC-class chemokines with a < 10 nm and four other CC chemokines with a between 10 and 100 nm and neutralizes CCL3, CCL3L1, and CCL8 with an IC < 10 nm The CC chemokine-binding profile was distinct from that of evasin 1 (EVA1), which does not bind CCL8. We also show that P672's binding activity can be markedly modulated by the location of a StrepII-His purification tag. Combining native MS and bottom-up proteomics, we further demonstrated that P672 is glycosylated and forms a 1:1 complex with CCL8, disrupting CCL8 homodimerization. Homology modeling of P672 using the crystal structure of the EVA1 and CCL3 complex as template suggested that 44 N-terminal residues of P672 form most of the contacts with CCL8. Replacing the 29 N-terminal residues of EVA1 with the 44 N-terminal residues of P672 enabled this hybrid evasin to bind and neutralize CCL8, indicating that the CCL8-binding properties of P672 reside, in part, in its N-terminal residues. This study shows that the function of certain tick evasins can be manipulated simply by adding a tag. We conclude that homology modeling helps identify regions with transportable chemokine-binding functions within evasins, which can be used to construct hybrid evasins with altered properties.

摘要

蜱传趋化因子结合蛋白(evasins)是一类新兴的生物制剂,可靶向多种趋化因子,并在临床前疾病模型中显示抗炎活性。我们利用酵母表面展示技术,从蜱中鉴定出一种 CCL8 结合 evasin,即 P672。研究发现,P672 以 < 10nm 的亲和力与 CCL8 及其他 8 种 CC 类趋化因子结合,以 10-100nm 的亲和力与其他 4 种 CC 趋化因子结合,并以 IC < 10nm 的亲和力中和 CCL3、CCL3L1 和 CCL8。P672 的 CC 趋化因子结合谱与不结合 CCL8 的 evasin 1(EVA1)不同。我们还表明,P672 的结合活性可明显受到 StrepII-His 纯化标签位置的调节。结合天然 MS 和自上而下的蛋白质组学分析,我们进一步证明 P672 是糖基化的,与 CCL8 形成 1:1 复合物,从而破坏 CCL8 同源二聚体的形成。使用 EVA1 和 CCL3 复合物的晶体结构作为模板对 P672 进行同源建模表明,P672 的 44 个 N 端残基与 CCL8 形成大部分结合。用 P672 的 44 个 N 端残基取代 EVA1 的 29 个 N 端残基,使这种杂交 evasin 能够结合并中和 CCL8,表明 P672 的 CCL8 结合特性部分位于其 N 端残基。这项研究表明,通过简单添加标签即可操纵某些蜱传 evasins 的功能。我们得出结论,同源建模有助于识别 evasins 中具有可转移趋化因子结合功能的区域,可用于构建具有改变特性的杂交 evasins。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83a2/5912465/e35af07e693f/zbc0171885220001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验