CNRS, Solvay, LOF, UMR 5258, Univ. Bordeaux, F-33600 Pessac, France.
Lab Chip. 2018 Mar 27;18(7):1075-1083. doi: 10.1039/c7lc01342f.
We report the fabrication of highly permeable membranes in poly(ethylene glycol) diacrylate (PEGDA) channels, for investigating ultra- or micro-filtration, at the microfluidic scale. More precisely, we used a maskless UV projection setup to photo-pattern PEG-based hydrogel membranes on a large scale (mm-cm), and with a spatial resolution of a few microns. We show that these membranes can withstand trans-membrane pressure drops of up to 7 bar without any leakage, thanks to the strong anchoring of the hydrogel to the channel walls. We also report in situ measurements of the Darcy permeability of these membranes, as a function of the deposited energy during photo-polymerization, and their formulation composition. We show that the use of PEG chains as porogens, as proposed in [Lee et al., Biomacromolecules, 2010, 11, 3316], significantly increases the porosity of the hydrogels, up to Darcy permeabilities of about 1.5 × 10-16 m2, while maintaining the strong mechanical stability of the membranes. We finally illustrate the opportunities offered by this technique, by investigating frontal filtration of colloidal dispersions in a straight microfluidic channel.
我们报告了在聚乙二醇二丙烯酸酯 (PEGDA) 通道中制造高渗透性膜的方法,用于在微流控尺度上研究超滤或微滤。更确切地说,我们使用无掩模 UV 投影设备在大规模 (mm-cm) 上以几微米的空间分辨率对基于 PEG 的水凝胶膜进行光图案化。我们表明,由于水凝胶与通道壁的牢固锚固,这些膜可以承受高达 7 巴的跨膜压降而不会泄漏。我们还报告了这些膜的达西渗透率的原位测量结果,作为光聚合过程中沉积能量的函数及其配方组成。我们表明,如 [Lee 等人,生物大分子,2010,11,3316] 中所提出的,使用 PEG 链作为致孔剂可显著提高水凝胶的孔隙率,达西渗透率高达约 1.5×10-16 m2,同时保持膜的强机械稳定性。最后,我们通过在直微流道中进行胶体分散体的前沿过滤来研究该技术提供的机会。