Department of Chemistry , The University of Western Ontario , London , Ontario N6A 5B7 , Canada.
Anal Chem. 2018 Mar 20;90(6):4126-4134. doi: 10.1021/acs.analchem.8b00099. Epub 2018 Mar 6.
"Native" electrospray ionization (ESI) mass spectrometry (MS) aims to transfer proteins from solution into the gas phase while maintaining solution-like structures and interactions. The ability to control the charge states of protein ions produced in these experiments is of considerable importance. Supercharging agents (SCAs) such as sulfolane greatly elevate charge states without significantly affecting the protein structure in bulk aqueous solution. The origin of native ESI supercharging remains contentious. According to one model, SCAs trigger unfolding within ESI droplets. In contrast, the "charge trapping model" envisions that SCAs impede the ejection of charge carriers (e.g., NH or Na) from the droplet. We addressed this controversy experimentally and computationally by employing 18C6 crown ether as a mechanistic probe in native ESI-MS experiments on holo-myoglobin. Remarkably, 18C6 suppressed the supercharging capability of sulfolane. Molecular dynamics (MD) simulations reproduced the experimental charge states. The MD data revealed that 18C6 altered the location of charge carriers in the ESI droplets. Without 18C6, sulfolane covered the droplets in an ionophobic layer that impeded charge carrier access to the surface. In contrast, 18C6 complexation caused charge carrier enrichment in this surface layer, thereby promoting charge ejection. For late droplets, all the water had left and the protein was encapsulated in sulfolane; charge ejection at this stage continued only in the presence of 18C6. As a result, evaporation to dryness of charge-depleted water/sulfolane/18C6 droplets produced low protein charge states, whereas charge-abundant water/sulfolane droplets generated high charge states. Our data support the view that native ESI supercharging is caused by charge trapping. Unfolding within the droplet may play an ancillary role under some conditions, but for the cases examined here, protein structural changes are not a causative factor for supercharging. Our conclusions are bolstered by dendrimer supercharging experiments.
“原生”电喷雾电离(ESI)质谱(MS)旨在将蛋白质从溶液中转移到气相中,同时保持溶液样的结构和相互作用。控制这些实验中产生的蛋白质离子荷电状态的能力非常重要。增溶剂(SCA),如环丁砜,极大地提高了蛋白质的荷电状态,而不会显著影响其在水溶液中的整体结构。原生 ESI 增溶的起源仍然存在争议。根据一种模型,SCA 触发 ESI 液滴中的展开。相比之下,“电荷捕获模型”设想 SCA 阻碍电荷载体(例如,NH 或 Na)从液滴中排出。我们通过在全肌红蛋白的原生 ESI-MS 实验中使用 18C6 冠醚作为机制探针来解决这一争议。值得注意的是,18C6 抑制了环丁砜的增溶能力。分子动力学(MD)模拟再现了实验电荷状态。MD 数据显示,18C6 改变了 ESI 液滴中电荷载体的位置。没有 18C6,环丁砜在液滴表面形成一层疏水性层,阻碍电荷载体进入表面。相比之下,18C6 络合使电荷载体在表面层中富集,从而促进电荷的排出。对于晚期液滴,所有的水都已离开,蛋白质被包裹在环丁砜中;只有在存在 18C6 的情况下,在这个阶段才会继续进行电荷排出。因此,干燥耗尽电荷的水/环丁砜/18C6 液滴的蒸发产生低蛋白质电荷状态,而富含电荷的水/环丁砜液滴产生高电荷状态。我们的数据支持这样的观点,即原生 ESI 增溶是由电荷捕获引起的。在液滴内的展开可能在某些条件下发挥辅助作用,但对于这里检查的情况,蛋白质结构变化不是增溶的因果因素。树状大分子增溶实验支持我们的结论。