Suppr超能文献

脓毒症分子诊断的新兴技术。

Emerging Technologies for Molecular Diagnosis of Sepsis.

机构信息

Bioengineering Department, University of California, San Diego, San Diego, California, USA.

Donald Danforth Plant Science Center, Saint Louis, Missouri, USA.

出版信息

Clin Microbiol Rev. 2018 Feb 28;31(2). doi: 10.1128/CMR.00089-17. Print 2018 Apr.

Abstract

Rapid and accurate profiling of infection-causing pathogens remains a significant challenge in modern health care. Despite advances in molecular diagnostic techniques, blood culture analysis remains the gold standard for diagnosing sepsis. However, this method is too slow and cumbersome to significantly influence the initial management of patients. The swift initiation of precise and targeted antibiotic therapies depends on the ability of a sepsis diagnostic test to capture clinically relevant organisms along with antimicrobial resistance within 1 to 3 h. The administration of appropriate, narrow-spectrum antibiotics demands that such a test be extremely sensitive with a high negative predictive value. In addition, it should utilize small sample volumes and detect polymicrobial infections and contaminants. All of this must be accomplished with a platform that is easily integrated into the clinical workflow. In this review, we outline the limitations of routine blood culture testing and discuss how emerging sepsis technologies are converging on the characteristics of the ideal sepsis diagnostic test. We include seven molecular technologies that have been validated on clinical blood specimens or mock samples using human blood. In addition, we discuss advances in machine learning technologies that use electronic medical record data to provide contextual evaluation support for clinical decision-making.

摘要

快速准确地分析感染病原体仍然是现代医疗保健面临的重大挑战。尽管分子诊断技术取得了进步,但血液培养分析仍然是诊断败血症的金标准。然而,这种方法过于缓慢和繁琐,无法对患者的初始治疗产生重大影响。快速启动精确和靶向抗生素治疗取决于败血症诊断测试在 1 至 3 小时内捕获具有临床相关性的生物体以及抗菌药物耐药性的能力。适当的窄谱抗生素的给药要求该测试具有极高的阴性预测值和极高的灵敏度。此外,它应该使用小样本量并检测混合感染和污染物。所有这些都必须通过一个易于集成到临床工作流程中的平台来实现。在这篇综述中,我们概述了常规血液培养检测的局限性,并讨论了新兴的败血症技术如何融合理想的败血症诊断测试的特征。我们包括七种已经在临床血液标本或模拟样本上使用人血进行验证的分子技术。此外,我们还讨论了机器学习技术的进展,这些技术利用电子病历数据为临床决策提供上下文评估支持。

相似文献

1
Emerging Technologies for Molecular Diagnosis of Sepsis.脓毒症分子诊断的新兴技术。
Clin Microbiol Rev. 2018 Feb 28;31(2). doi: 10.1128/CMR.00089-17. Print 2018 Apr.
2
Emerging technologies for rapid identification of bloodstream pathogens.用于快速鉴定血流病原体的新兴技术。
Clin Infect Dis. 2014 Jul 15;59(2):272-8. doi: 10.1093/cid/ciu292. Epub 2014 Apr 24.
5
Advances in the microbiological diagnosis of sepsis.脓毒症微生物诊断的进展
Shock. 2008 Oct;30 Suppl 1:41-6. doi: 10.1097/SHK.0b013e3181819f6c.
10
Guidelines on blood cultures.血培养指南。
J Microbiol Immunol Infect. 2010 Aug;43(4):347-9. doi: 10.1016/S1684-1182(10)60054-0.

引用本文的文献

本文引用的文献

1
Pediatric Severe Sepsis Prediction Using Machine Learning.使用机器学习进行小儿严重脓毒症预测
Front Pediatr. 2019 Oct 11;7:413. doi: 10.3389/fped.2019.00413. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验