Suppr超能文献

利用血清代谢物在急诊科对感染性休克进行早期预测。

Early Prediction of Septic Shock in Emergency Department Using Serum Metabolites.

作者信息

Hong Yu, Li Li-Hua, Kuo Ting-Hao, Lee Yi-Tzu, Hsu Cheng-Chih

机构信息

Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan.

Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, 11217, Taipei, Taiwan.

出版信息

J Am Soc Mass Spectrom. 2025 Jun 4;36(6):1264-1276. doi: 10.1021/jasms.5c00009. Epub 2025 May 9.

Abstract

Early recognition of septic shock is crucial for improving clinical management and patient outcomes, especially in the emergency department (ED). This study conducted serum metabolomic profiling on ED patients diagnosed with septic shock (n = 32) and those without septic shock (n = 92) using a high-resolution mass spectrometer. By implementing a supervised machine learning algorithm, a prediction model based on a panel of metabolites achieved an accuracy of 87.8%. Notably, when employed on a low-resolution instrument, the model maintained its predictive performance with an accuracy of 84.2%. These results demonstrate the potential of metabolite-based algorithms to identify patients at high risk of septic shock. Our proposed workflow aims to optimize risk assessment and streamline clinical management processes in the ED, holding promise as an efficient routine test to promote timely intensive interventions and reduce septic shock mortality.

摘要

早期识别感染性休克对于改善临床管理和患者预后至关重要,尤其是在急诊科(ED)。本研究使用高分辨率质谱仪对诊断为感染性休克的急诊科患者(n = 32)和未患感染性休克的患者(n = 92)进行了血清代谢组学分析。通过实施监督式机器学习算法,基于一组代谢物的预测模型准确率达到了87.8%。值得注意的是,当在低分辨率仪器上使用时,该模型仍保持其预测性能,准确率为84.2%。这些结果证明了基于代谢物的算法在识别感染性休克高危患者方面的潜力。我们提出的工作流程旨在优化急诊科的风险评估并简化临床管理流程,有望成为一种有效的常规检测方法,以促进及时的强化干预并降低感染性休克死亡率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验