Complex Materials, Department of Materials, ETH Zürich, 8093, Zürich, Switzerland.
UCD School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
Nat Commun. 2018 Feb 28;9(1):878. doi: 10.1038/s41467-018-03216-w.
Soft actuation allows robots to interact safely with humans, other machines, and their surroundings. Full exploitation of the potential of soft actuators has, however, been hindered by the lack of simple manufacturing routes to generate multimaterial parts with intricate shapes and architectures. Here, we report a 3D printing platform for the seamless digital fabrication of pneumatic silicone actuators exhibiting programmable bioinspired architectures and motions. The actuators comprise an elastomeric body whose surface is decorated with reinforcing stripes at a well-defined lead angle. Similar to the fibrous architectures found in muscular hydrostats, the lead angle can be altered to achieve elongation, contraction, or twisting motions. Using a quantitative model based on lamination theory, we establish design principles for the digital fabrication of silicone-based soft actuators whose functional response is programmed within the material's properties and architecture. Exploring such programmability enables 3D printing of a broad range of soft morphing structures.
软致动允许机器人与人类、其他机器及其周围环境安全地交互。然而,由于缺乏简单的制造路线来生成具有复杂形状和结构的多材料零件,因此软致动器的全部潜力尚未得到充分利用。在这里,我们报告了一种 3D 打印平台,用于无缝数字化制造气动硅树脂致动器,其具有可编程的仿生结构和运动。致动器包括弹性体主体,其表面以明确定义的先导角装饰有增强条纹。类似于在肌肉水压计中发现的纤维状结构,先导角可以改变以实现伸长、收缩或扭曲运动。使用基于层压理论的定量模型,我们为基于硅酮的软致动器的数字制造建立了设计原则,其功能响应在材料的特性和结构内编程。探索这种可编程性使得能够 3D 打印出广泛的软变形结构。