Suppr超能文献

囚禁离子量子比特的快速量子逻辑门。

Fast quantum logic gates with trapped-ion qubits.

机构信息

Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK.

出版信息

Nature. 2018 Feb 28;555(7694):75-78. doi: 10.1038/nature25737.

Abstract

Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer. The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes. However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural 'speed limit' of the trap. Here we implement one such method, which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds-less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties, operation fidelities and optical connectivity of trapped-ion qubits with the submicrosecond logic speeds that are usually associated with solid-state devices.

摘要

基于单个囚禁原子离子的量子位是构建量子计算机的一种很有前途的技术。为了实现这一目标,已经实现了所需精度的基本操作,这些操作对于一些纠错方案是必要的。然而,迄今为止,用于产生量子纠缠的基本两量子比特逻辑门总是在绝热条件下执行(在这种条件下,门相对于陷阱中离子的特征运动频率较慢),从而导致逻辑速度约为 10 千赫兹。已经有许多关于执行比这个陷阱的自然“速度限制”更快的门的方法的提案。在这里,我们实现了一种这样的方法,该方法使用振幅成形激光脉冲来驱动离子沿着设计的轨迹运动,使得门操作对脉冲的光学相位不敏感。这使得能够实现快速(兆赫兹速率)的量子逻辑,对光学相位的波动具有鲁棒性,否则这将是实验误差的一个重要来源。我们证明了在门时间短至 480 纳秒(小于陷阱中离子的单个振荡周期)的情况下可以生成纠缠,比在类似的钙-43超精细量子比特中测量的记忆相干时间短八个数量级。该方法的优势在中间时间尺度上最为明显,此时它产生的门错误比使用传统技术所能达到的低十倍以上;例如,我们实现了一个持续时间为 1.6 微秒、保真度为 99.8%的门。以更大的激光强度为代价,可以实现更快和更高保真度的门。该方法仅需要单个振幅成形脉冲和一对从连续波激光衍生的光束。它提供了将囚禁离子量子比特无与伦比的相干特性、操作保真度和光学连接性与通常与固态器件相关联的亚微秒逻辑速度相结合的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验