Gu Zhining, Guo Wei, Li Chaoyang, Zhu Xinyan, Guo Tao
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China.
Collaborative Innovation Center of Geospatial Technology, Wuhan University, 129 Luoyu Road, Wuhan 430079, China.
Sensors (Basel). 2018 Feb 27;18(3):711. doi: 10.3390/s18030711.
Pedestrian dead reckoning (PDR) positioning algorithms can be used to obtain a target's location only for movement with step features and not for driving, for which the trilateral Bluetooth indoor positioning method can be used. In this study, to obtain the precise locations of different states (pedestrian/car) using the corresponding positioning algorithms, we propose an adaptive method for switching between the PDR and car indoor positioning algorithms based on multilayer time sequences (MTSs). MTSs, which consider the behavior context, comprise two main aspects: filtering of noisy data in small-scale time sequences and using a state chain to reduce the time delay of algorithm switching in large-scale time sequences. The proposed method can be expected to realize the recognition of stationary, walking, driving, or other states; switch to the correct indoor positioning algorithm; and improve the accuracy of localization compared to using a single positioning algorithm. Our experiments show that the recognition of static, walking, driving, and other states improves by 5.5%, 45.47%, 26.23%, and 21% on average, respectively, compared with convolutional neural network (CNN) method. The time delay decreases by approximately 0.5-8.5 s for the transition between states and by approximately 24 s for the entire process.
行人航位推算(PDR)定位算法仅可用于具有步长特征的移动目标定位,而不适用于驾驶场景,对于驾驶场景可采用三边测量蓝牙室内定位方法。在本研究中,为了使用相应的定位算法获取不同状态(行人/汽车)的精确位置,我们提出了一种基于多层时间序列(MTS)在PDR和汽车室内定位算法之间进行切换的自适应方法。考虑行为上下文的MTS包括两个主要方面:在小规模时间序列中过滤噪声数据,以及在大规模时间序列中使用状态链来减少算法切换的时间延迟。与使用单一定位算法相比,该方法有望实现对静止、行走、驾驶或其他状态的识别;切换到正确的室内定位算法;并提高定位精度。我们的实验表明,与卷积神经网络(CNN)方法相比,静态、行走、驾驶和其他状态的识别率平均分别提高了5.5%、45.47%、26.23%和21%。状态转换的时间延迟减少了约0.5 - 8.5秒,整个过程的时间延迟减少了约24秒。