Suppr超能文献

SETD7 通过阶段特异性转录激活驱动心脏谱系承诺。

SETD7 Drives Cardiac Lineage Commitment through Stage-Specific Transcriptional Activation.

机构信息

Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA.

Genetics Bioinformatics Service Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Cell Stem Cell. 2018 Mar 1;22(3):428-444.e5. doi: 10.1016/j.stem.2018.02.005.

Abstract

Cardiac development requires coordinated and large-scale rearrangements of the epigenome. The roles and precise mechanisms through which specific epigenetic modifying enzymes control cardiac lineage specification, however, remain unclear. Here we show that the H3K4 methyltransferase SETD7 controls cardiac differentiation by reading H3K36 marks independently of its enzymatic activity. Through chromatin immunoprecipitation sequencing (ChIP-seq), we found that SETD7 targets distinct sets of genes to drive their stage-specific expression during cardiomyocyte differentiation. SETD7 associates with different co-factors at these stages, including SWI/SNF chromatin-remodeling factors during mesodermal formation and the transcription factor NKX2.5 in cardiac progenitors to drive their differentiation. Further analyses revealed that SETD7 binds methylated H3K36 in the bodies of its target genes to facilitate RNA polymerase II (Pol II)-dependent transcription. Moreover, abnormal SETD7 expression impairs functional attributes of terminally differentiated cardiomyocytes. Together, these results reveal how SETD7 acts at sequential steps in cardiac lineage commitment, and they provide insights into crosstalk between dynamic epigenetic marks and chromatin-modifying enzymes.

摘要

心脏发育需要表观基因组的协调和大规模重排。然而,特定的表观遗传修饰酶控制心脏谱系特化的确切机制和作用仍不清楚。在这里,我们表明,H3K4 甲基转移酶 SETD7 通过独立于其酶活性读取 H3K36 标记来控制心脏分化。通过染色质免疫沉淀测序 (ChIP-seq),我们发现 SETD7 靶向不同的基因集,以在心肌细胞分化过程中驱动其阶段特异性表达。SETD7 在这些阶段与不同的共因子结合,包括中胚层形成期间的 SWI/SNF 染色质重塑因子和心脏祖细胞中的转录因子 NKX2.5,以驱动它们的分化。进一步的分析表明,SETD7 结合其靶基因的 H3K36 甲基化,以促进 RNA 聚合酶 II (Pol II) 依赖性转录。此外,异常的 SETD7 表达会损害终末分化的心肌细胞的功能属性。总之,这些结果揭示了 SETD7 如何在心脏谱系特化的连续步骤中发挥作用,并为动态表观遗传标记和染色质修饰酶之间的串扰提供了见解。

相似文献

6
SETD7 Regulates the Differentiation of Human Embryonic Stem Cells.SETD7调控人类胚胎干细胞的分化。
PLoS One. 2016 Feb 18;11(2):e0149502. doi: 10.1371/journal.pone.0149502. eCollection 2016.
8
Brg1 modulates enhancer activation in mesoderm lineage commitment.Brg1在中胚层谱系定向中调节增强子激活。
Development. 2015 Apr 15;142(8):1418-30. doi: 10.1242/dev.109496. Epub 2015 Mar 26.

引用本文的文献

4
Epigenetic regulation of heart failure.心力衰竭的表观遗传学调控。
Curr Opin Cardiol. 2024 Jul 1;39(4):371-379. doi: 10.1097/HCO.0000000000001150. Epub 2024 Apr 5.

本文引用的文献

6
SETD7 Regulates the Differentiation of Human Embryonic Stem Cells.SETD7调控人类胚胎干细胞的分化。
PLoS One. 2016 Feb 18;11(2):e0149502. doi: 10.1371/journal.pone.0149502. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验