Lighthouse Institute, Chestnut Health Systems, 221 W. Walton, Chicago, IL 60610, USA.
Lighthouse Institute, Chestnut Health Systems, 448 Wylie Dr., Normal, IL 61761, USA.
Addict Behav. 2018 Jul;82:72-78. doi: 10.1016/j.addbeh.2018.02.025. Epub 2018 Feb 23.
A key component of relapse prevention is to self-monitor the internal (feelings or cravings) and external (people, places, activities) factors associated with relapse. Smartphones can deliver ecological momentary assessments (EMA) to help individuals self-monitor. The purpose of this exploratory study was to develop a model for predicting an individual's risk of future substance use after each EMA and validate it using a multi-level model controlling for repeated measures on persons.
Data are from 21,897 observations from 43 adults following their initial episode of substance use treatment in Chicago from 2015 to 2016. Participants were provided smartphones for six months and asked to complete two to three minute EMAs at five random times per day (81% completion). In any given EMA, 2.7% reported substance use and 8% reported any use in the next five completed EMA. Chi-square Automatic Interaction Detector (CHAID) was used to classify EMAs into six levels of risk and then validated with a hierarchical linear model (HLM).
The major predictors of substance use in the next five completed EMAs were substance use pattern over the current and prior five EMAs (no recent/current use, either recent or current use [but not both], continued use [both recent and current]), negative affect (feelings), and craving (rating). Negative affect was important for EMAs with no current or recent use reported; craving was important for EMAs with either recent or current use; and neither mattered for EMAs with continued use. The CHAID gradated EMA risk from 0.7% to 36.6% of the next five completed EMAs with substance use reported. It also gradated risk of "any" use in the next five completed EMAs from 3% to 82%.
This study demonstrated the potential of using smartphone-based EMAs to monitor and provide feedback for relapse prevention in future studies.
复发预防的一个关键组成部分是自我监测与复发相关的内部(感觉或渴望)和外部(人、地点、活动)因素。智能手机可以提供生态瞬间评估(EMA),以帮助个人自我监测。本探索性研究的目的是开发一种模型,用于预测个体在每次 EMA 后的未来物质使用风险,并使用控制个体重复测量的多层次模型对其进行验证。
数据来自 2015 年至 2016 年期间在芝加哥接受初始物质使用治疗的 43 名成年人的 21897 次观察。参与者提供了智能手机,并要求他们在每天五个随机时间完成两到三分钟的 EMA(完成率为 81%)。在任何给定的 EMA 中,有 2.7%报告物质使用,8%报告在下五个完成的 EMA 中任何时候使用。使用卡方自动交互探测器(CHAID)将 EMA 分类为六个风险级别,然后使用分层线性模型(HLM)进行验证。
下五个完成的 EMA 中物质使用的主要预测因素是当前和之前五个 EMA 中的物质使用模式(没有近期/当前使用,或者最近或当前使用[但不是两者都有],持续使用[两者都有近期和当前])、负性情绪(感觉)和渴望(评分)。负性情绪对没有当前或近期使用报告的 EMA 很重要;渴望对有近期或当前使用报告的 EMA 很重要;而对有持续使用报告的 EMA 都不重要。CHAID 将 EMA 风险从下五个完成的 EMA 中报告物质使用的 0.7%到 36.6%进行了分级。它还将下五个完成的 EMA 中“任何”使用的风险从 3%到 82%进行了分级。
这项研究表明,使用基于智能手机的 EMA 监测和为未来研究中的复发预防提供反馈具有潜力。