Suppr超能文献

改善在健康中心隐匿于显而易见之处的高血压患者(HIPS)的识别与诊断。

Improving Identification and Diagnosis of Hypertensive Patients Hiding in Plain Sight (HIPS) in Health Centers.

作者信息

Meador Margaret, Osheroff Jerome A, Reisler Benjamin

出版信息

Jt Comm J Qual Patient Saf. 2018 Mar;44(3):117-129. doi: 10.1016/j.jcjq.2017.09.003.

Abstract

BACKGROUND

Hypertension is the most prevalent chronic condition diagnosed among patients served in the safety net in the United States; however, many safety-net patients with hypertension are not formally diagnosed and may remain untreated and at increased risk for cardiovascular events. Identifying undiagnosed hypertension using algorithmic logic programmed into clinical decision support (CDS) approaches is a promising practice but has not been broadly tested in the safety-net setting.

METHODS

The project used a quality improvement approach wherein information flows and actions related to blood pressure measurement were modified to include algorithm criteria to identify patients who might have undiagnosed hypertension. Identified patients were recalled for evaluation and hypertension diagnosis, if appropriate. Ten health centers in Arkansas, California, Kentucky, and Missouri were selected to participate in the project on the basis of high hypertension prevalence (compared to national average), demographic and geographic diversity, mature information systems infrastructure, and executive support. The project targeted patients from 18 to 85 years of age.

RESULTS

After implementation of algorithm-based interventions, diagnosed hypertension prevalence increased significantly from 34.5% to 36.7% (p <0.05). A cohort of patients was tracked from 8 of the 10 health centers to assess follow-up evaluation and diagnosis rates; 65.2% completed a follow-up evaluation, of which 31.9% received a hypertension diagnosis.

CONCLUSION

Using algorithmic logic and other CDS-enabled care process improvements appears to be an effective way health centers can identify and engage patients at risk for undiagnosed hypertension. Appropriately diagnosing all hypertensive patients ensures that hypertension control efforts yield maximal improvements in population health.

摘要

背景

高血压是美国安全网所服务患者中诊断出的最普遍的慢性病;然而,许多患有高血压的安全网患者未得到正式诊断,可能仍未接受治疗,心血管事件风险增加。使用编入临床决策支持(CDS)方法中的算法逻辑来识别未诊断的高血压是一种有前景的做法,但尚未在安全网环境中广泛测试。

方法

该项目采用了质量改进方法,其中修改了与血压测量相关的信息流和行动,以纳入算法标准来识别可能患有未诊断高血压的患者。如有必要,召回已识别的患者进行评估和高血压诊断。根据高血压高患病率(与全国平均水平相比)、人口和地理多样性、成熟的信息系统基础设施以及行政支持,选择了阿肯色州、加利福尼亚州、肯塔基州和密苏里州的10个健康中心参与该项目。该项目的目标是18至85岁的患者。

结果

实施基于算法的干预措施后,确诊的高血压患病率从34.5%显著增加到36.7%(p<0.05)。对10个健康中心中的8个中心的一组患者进行了跟踪,以评估随访评估和诊断率;65.2%的患者完成了随访评估,其中31.9%的患者被诊断为高血压。

结论

使用算法逻辑和其他基于CDS的护理流程改进似乎是健康中心识别和接触有未诊断高血压风险患者的有效方法。对所有高血压患者进行适当诊断可确保高血压控制努力在人群健康方面产生最大改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验