Suppr超能文献

用于预测转入儿科重症监护病房的集成增强模型。

An ensemble boosting model for predicting transfer to the pediatric intensive care unit.

机构信息

Philips Research North America, Cambridge, MA, United States.

Philips Research North America, Cambridge, MA, United States.

出版信息

Int J Med Inform. 2018 Apr;112:15-20. doi: 10.1016/j.ijmedinf.2018.01.001. Epub 2018 Jan 9.

Abstract

BACKGROUND

Early deterioration indicators have the potential to alert hospital care staff in advance of adverse events, such as patients requiring an increased level of care, or the need for rapid response teams to be called. Our work focuses on the problem of predicting the transfer of pediatric patients from the general ward of a hospital to the pediatric intensive care unit.

OBJECTIVES

The development of a data-driven pediatric early deterioration indicator for use by clinicians with the purpose of predicting encounters where transfer from the general ward to the PICU is likely.

METHODS

Using data collected over 5.5 years from the electronic health records of two medical facilities, we develop machine learning classifiers based on adaptive boosting and gradient tree boosting. We further combine these learned classifiers into an ensemble model and compare its performance to a modified pediatric early warning score (PEWS) baseline that relies on expert defined guidelines. To gauge model generalizability, we perform an inter-facility evaluation where we train our algorithm on data from one facility and perform evaluation on a hidden test dataset from a separate facility.

RESULTS

We show that improvements are witnessed over the modified PEWS baseline in accuracy (0.77 vs. 0.69), sensitivity (0.80 vs. 0.68), specificity (0.74 vs. 0.70) and AUROC (0.85 vs. 0.73).

CONCLUSIONS

Data-driven, machine learning algorithms can improve PICU transfer prediction accuracy compared to expertly defined systems, such as a modified PEWS, but care must be taken in the training of such approaches to avoid inadvertently introducing bias into the outcomes of these systems.

摘要

背景

早期恶化指标有可能提前提醒医院护理人员注意不良事件,例如需要提高护理水平的患者,或者需要快速反应团队进行响应。我们的工作重点是预测儿科患者从医院普通病房转移到儿科重症监护病房的问题。

目的

开发一种数据驱动的儿科早期恶化指标,供临床医生使用,目的是预测患者可能从普通病房转至儿科重症监护病房的情况。

方法

使用从两个医疗机构的电子健康记录中收集的超过 5.5 年的数据,我们基于自适应提升和梯度提升树开发机器学习分类器。我们进一步将这些学习到的分类器组合成一个集成模型,并将其性能与依赖专家定义指南的修改后的儿科预警评分(PEWS)基线进行比较。为了评估模型的泛化能力,我们进行了机构间评估,即在一个机构的数据上训练我们的算法,并在另一个独立机构的隐藏测试数据集上进行评估。

结果

我们发现,与修改后的 PEWS 基线相比,准确性(0.77 与 0.69)、敏感性(0.80 与 0.68)、特异性(0.74 与 0.70)和 AUROC(0.85 与 0.73)都有所提高。

结论

与专家定义的系统(如修改后的 PEWS)相比,基于数据的机器学习算法可以提高儿科重症监护病房转移预测的准确性,但在训练这些方法时必须小心,以避免无意中引入对这些系统结果的偏见。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验