Suppr超能文献

从已知到未知:在全新的感觉运动图谱中迈向未探索的区域。

From known to unknown: moving to unvisited locations in a novel sensorimotor map.

作者信息

van Vugt Floris T, Ostry David J

机构信息

Department of Psychology, McGill University, Montreal, Quebec, Canada.

Haskins Laboratories, New Haven, Connecticut.

出版信息

Ann N Y Acad Sci. 2018 Mar 3. doi: 10.1111/nyas.13608.

Abstract

Sensorimotor learning requires knowledge of the relationship between movements and sensory effects: a sensorimotor map. Generally, these mappings are not innate but have to be learned. During learning, the challenge is to build a continuous map from a set of discrete observations, that is, predict locations of novel targets. One hypothesis is that the learner linearly interpolates among discrete observations that are already in the map. Here, this hypothesis is tested by exposing human subjects to a novel mapping between arm movements and sounds. Participants were passively moved to the edges of the workspace receiving the corresponding sounds and then were presented intermediate sounds and asked to make movements to locations they thought corresponded to those sounds. It is observed that average movements roughly match linear interpolation of the space. However, the actual distribution of participants' movements is best described by a bimodal reaching strategy in which they move to one of two locations near the workspace edge where they had prior exposure to the sound-movement pairing. These results suggest that interpolation happens to a limited extent only and that the acquisition of sensorimotor maps may not be driven by interpolation but instead relies on a flexible recombination of instance-based learning.

摘要

感觉运动学习需要了解动作与感觉效果之间的关系

即感觉运动图谱。一般来说,这些映射并非天生就有,而是需要学习的。在学习过程中,挑战在于从一组离散的观察结果构建一个连续的图谱,也就是说,预测新目标的位置。一种假设是,学习者在图谱中已有的离散观察结果之间进行线性插值。在此,通过让人类受试者接触手臂动作与声音之间的新映射来检验这一假设。参与者被被动地移动到工作空间的边缘并接收相应的声音,然后呈现中间声音,并要求他们向他们认为与这些声音对应的位置移动。观察到平均动作大致与空间的线性插值相匹配。然而,参与者动作的实际分布最好用一种双峰到达策略来描述,即他们移动到工作空间边缘附近他们之前接触过声音 - 动作配对的两个位置之一。这些结果表明,插值仅在有限程度上发生,并且感觉运动图谱的获取可能不是由插值驱动的,而是依赖于基于实例学习的灵活重组。

相似文献

3
The Structure and Acquisition of Sensorimotor Maps.感觉运动图的结构与获取。
J Cogn Neurosci. 2018 Mar;30(3):290-306. doi: 10.1162/jocn_a_01204. Epub 2017 Nov 13.
4
Modular decomposition in visuomotor learning.视觉运动学习中的模块分解
Nature. 1997 Mar 27;386(6623):392-5. doi: 10.1038/386392a0.
8
Robust Sensorimotor Learning during Variable Sentence-Level Speech.在变句子级别的语音中进行强健的感觉运动学习。
Curr Biol. 2018 Oct 8;28(19):3106-3113.e2. doi: 10.1016/j.cub.2018.07.030. Epub 2018 Sep 20.

本文引用的文献

2
The Structure and Acquisition of Sensorimotor Maps.感觉运动图的结构与获取。
J Cogn Neurosci. 2018 Mar;30(3):290-306. doi: 10.1162/jocn_a_01204. Epub 2017 Nov 13.
3
The Role of Variability in Motor Learning.变异性在运动学习中的作用。
Annu Rev Neurosci. 2017 Jul 25;40:479-498. doi: 10.1146/annurev-neuro-072116-031548. Epub 2017 May 10.
6
Dual-process decomposition in human sensorimotor adaptation.人类感觉运动适应中的双加工分解。
Curr Opin Neurobiol. 2015 Aug;33:71-7. doi: 10.1016/j.conb.2015.03.003. Epub 2015 Mar 28.
7
Reward-dependent modulation of movement variability.基于奖励的运动变异性调节。
J Neurosci. 2015 Mar 4;35(9):4015-24. doi: 10.1523/JNEUROSCI.3244-14.2015.
9
Vocal generalization depends on gesture identity and sequence.语音泛化取决于手势的身份和序列。
J Neurosci. 2014 Apr 16;34(16):5564-74. doi: 10.1523/JNEUROSCI.5169-13.2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验