Tian Lucas Y, Brainard Michael S
Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
Neuron. 2017 Dec 6;96(5):1168-1177.e5. doi: 10.1016/j.neuron.2017.10.019. Epub 2017 Nov 16.
Motor skills depend on the reuse of individual gestures in multiple sequential contexts (e.g., a single phoneme in different words). Yet optimal performance requires that a given gesture be modified appropriately depending on the sequence in which it occurs. To investigate the neural architecture underlying such context-dependent modifications, we studied Bengalese finch song, which, like speech, consists of variable sequences of "syllables." We found that when birds are instructed to modify a syllable in one sequential context, learning generalizes across contexts; however, if unique instruction is provided in different contexts, learning is specific for each context. Using localized inactivation of a cortical-basal ganglia circuit specialized for song, we show that this balance between generalization and specificity reflects a hierarchical organization of neural substrates. Primary motor circuitry encodes a core syllable representation that contributes to generalization, while top-down input from cortical-basal ganglia circuitry biases this representation to enable context-specific learning.
运动技能依赖于在多个连续情境中重复使用单个手势(例如,不同单词中的单个音素)。然而,最佳表现要求根据给定手势出现的顺序进行适当修改。为了研究这种依赖情境的修改背后的神经结构,我们研究了孟加拉雀的歌声,它与言语一样,由“音节”的可变序列组成。我们发现,当鸟类被指示在一种连续情境中修改一个音节时,学习可以跨情境泛化;然而,如果在不同情境中提供独特的指令,学习则针对每个情境具有特异性。通过对专门用于歌声的皮质-基底神经节回路进行局部失活,我们表明这种泛化和特异性之间的平衡反映了神经基质的层次组织。初级运动回路编码有助于泛化的核心音节表征,而来自皮质-基底神经节回路的自上而下输入使这种表征产生偏差,以实现针对特定情境的学习。