Suppr超能文献

基于机器学习的全膝关节置换假体尺寸预测指南的验证和性能评估。

Validation and performance of a machine-learning derived prediction guide for total knee arthroplasty component sizing.

机构信息

Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA.

University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.

出版信息

Arch Orthop Trauma Surg. 2021 Dec;141(12):2235-2244. doi: 10.1007/s00402-021-04041-5. Epub 2021 Jul 13.

Abstract

INTRODUCTION

Anticipation of patient-specific component sizes prior to total knee arthroplasty (TKA) is essential to avoid excessive cost associated with additional surgical trays and morbidity associated with imperfect sizing. Current methods of size prediction, including templating, are inconsistent and time-consuming. Machine learning (ML) algorithms may allow for accurate TKA component size prediction with the ability to make predictions in real-time.

METHODS

Consecutive patients receiving primary TKA between 2012 and 2020 from two large tertiary academic and six community hospitals were identified. The primary outcomes were the final femoral and tibial component sizes extracted from automated inventory systems. Five ML algorithms were trained with routinely corrected demographic variables (age, height, weight, body mass index, and sex) using 80% of the study population and internally validated on an independent set of the remaining 20% of patients. Algorithm performance was evaluated through accuracy, mean absolute error (MAE), and root mean-squared error (RMSE).

RESULTS

A total of 17,283 patients that received one of 9 TKA implants from independent manufacturers were included. The SGB model accuracy for predicting ± 4-mm of the true femoral anteroposterior diameter was 83.6% and for ± 1 size of the true femoral component size was 95.0%. The SGB model accuracy for predicting ± 4-mm of the true tibial medial/lateral diameter was 83.0% and for ± 1 size of the true tibial component size was 97.8%. Patient sex was the most influential feature in terms of informing the SGB model predictions for both femoral and tibial component sizing. A TKA implant sizing application was subsequently created.

CONCLUSION

Novel machine learning algorithms demonstrated good to excellent performance for predicting TKA component size. Patient sex appears to contribute an important role in predicting TKA size. A web-based real-time prediction application was created capable of integrating patient specific data to predict TKA size, which will require external validation prior to clinical use.

摘要

简介

在全膝关节置换术(TKA)之前预测患者特定的组件尺寸对于避免与额外手术托盘相关的过高成本以及与尺寸不精确相关的发病率至关重要。当前的尺寸预测方法,包括模板,不一致且耗时。机器学习(ML)算法可以实现 TKA 组件尺寸的准确预测,并能够实时进行预测。

方法

确定了 2012 年至 2020 年间从两家大型三级学术医院和六家社区医院接受初次 TKA 的连续患者。主要结果是从自动库存系统中提取的最终股骨和胫骨组件尺寸。使用研究人群的 80%来训练五个 ML 算法,并使用常规校正的人口统计学变量(年龄、身高、体重、体重指数和性别),并在剩余 20%患者的独立数据集上进行内部验证。通过准确性、平均绝对误差(MAE)和均方根误差(RMSE)评估算法性能。

结果

共纳入了来自独立制造商的 9 种 TKA 植入物中的 17283 名患者。SGB 模型预测真实股骨前后直径的±4mm 的准确率为 83.6%,预测真实股骨组件尺寸的±1 尺寸的准确率为 95.0%。SGB 模型预测真实胫骨内侧/外侧直径的±4mm 的准确率为 83.0%,预测真实胫骨组件尺寸的±1 尺寸的准确率为 97.8%。就股骨和胫骨组件尺寸的 SGB 模型预测而言,患者性别是最具影响力的特征。随后创建了一个 TKA 植入物尺寸应用程序。

结论

新的机器学习算法在预测 TKA 组件尺寸方面表现出了良好到优秀的性能。患者性别似乎在预测 TKA 尺寸方面起着重要作用。创建了一个基于网络的实时预测应用程序,能够整合患者特定的数据来预测 TKA 尺寸,在临床使用之前需要进行外部验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验