Josell D, Moffat T P
Materials Science and Engineering Division, NIST, Gaithersburg, MD 20899, USA.
ECS Trans. 2016;163(7):D322-D331. doi: 10.1149/2.1151607jes. Epub 2016 Apr 30.
This work demonstrates void-free nickel filling of 56 μm tall, annular Through Silicon Vias (TSVs) using a mechanism that couples suppression breakdown and surface topography to achieve controlled superconformal, void-free deposition. The chemistry, a Watts electrolyte containing a dilute suppressing additive, and processes are fully detailed. The impact of deposition potential and additive concentration on the filling of the patterned features is presented. Voltammetric measurements on planar substrates, including the impact of rotation rate and suppressor concentration on the rate of metal deposition and potential of suppression breakdown, are used to quantify the interplay between metal deposition and suppressor adsorption. The derived kinetics are then used to quantitatively predict the observed bottom-up filling in the TSVs using the S-shaped negative differential resistance (S-NDR) mechanism for superconformal deposition; the predictions capture the experimental observations. This work extends understanding and application of the additive-derived S-NDR mechanism developed with non-ferrous metals.
这项工作展示了使用一种将抑制击穿和表面形貌相结合的机制,对56μm高的环形硅通孔(TSV)进行无空洞镍填充,以实现可控的超共形无空洞沉积。详细介绍了化学组成(一种含有稀抑制添加剂的瓦特电解液)和工艺。阐述了沉积电位和添加剂浓度对图案化特征填充的影响。通过对平面基板进行伏安测量,包括旋转速率和抑制剂浓度对金属沉积速率和抑制击穿电位的影响,来量化金属沉积和抑制剂吸附之间的相互作用。然后,利用超共形沉积的S形负微分电阻(S-NDR)机制,将推导得到的动力学用于定量预测TSV中观察到的自底向上填充情况;预测结果与实验观察结果相符。这项工作扩展了对有色金属所开发的添加剂衍生S-NDR机制的理解和应用。