Suppr超能文献

用于结直肠癌样本靶向测序的基因panel分析。

Analysis of a gene panel for targeted sequencing of colorectal cancer samples.

作者信息

Jensen Klaus Højgaard, Izarzugaza Jose M G, Juncker Agnieszka Sierakowska, Hansen Rasmus Borup, Hansen Torben Frøstrup, Timshel Pascal, Blondal Thorarinn, Jensen Thomas Skøt, Rygaard-Hjalsted Eske, Mouritzen Peter, Thorsen Michael, Wernersson Rasmus, Nielsen Henrik Bjørn, Jakobsen Anders, Brunak Søren, Sørensen Flemming Brandt

机构信息

Department of Bio and Health Informatics, Technical University of Denmark, Kgs, Lyngby 2800, Denmark.

Intomics A/S, Kgs, Lyngby 2800, Denmark.

出版信息

Oncotarget. 2018 Jan 10;9(10):9043-9060. doi: 10.18632/oncotarget.24138. eCollection 2018 Feb 6.

Abstract

Colorectal cancer (CRC) is a leading cause of death worldwide. Surgical intervention is a successful treatment for stage I patients, whereas other more advanced cases may require adjuvant chemotherapy. The selection of effective adjuvant treatments remains, however, challenging. Accurate patient stratification is necessary for the identification of the subset of patients likely responding to treatment, while sparing others from pernicious treatment. Targeted sequencing approaches may help in this regard, enabling rapid genetic investigation, and at the same time easily applicable in routine diagnosis. We propose a set of guidelines for the identification, including variant calling and filtering, of somatic mutations driving tumorigenesis in the absence of matched healthy tissue. We also discuss the inclusion criteria for the generation of our gene panel. Furthermore, we evaluate the prognostic impact of individual genes, using Cox regression models in the context of overall survival and disease-free survival. These analyses confirmed the role of commonly used biomarkers, and shed light on controversial genes such as . Applying those guidelines, we created a novel gene panel to investigate the onset and progression of CRC in 273 patients. Our comprehensive biomarker set includes 266 genes that may play a role in the progression through the different stages of the disease. Tracing the developmental state of the tumour, and its resistances, is instrumental in patient stratification and reliable decision making in precision clinical practice.

摘要

结直肠癌(CRC)是全球主要的死亡原因之一。手术干预是I期患者的成功治疗方法,而其他更晚期的病例可能需要辅助化疗。然而,选择有效的辅助治疗仍然具有挑战性。准确的患者分层对于识别可能对治疗有反应的患者亚组至关重要,同时避免其他患者接受有害治疗。靶向测序方法在这方面可能会有所帮助,它能够进行快速的基因研究,并且同时易于应用于常规诊断。我们提出了一套在没有匹配健康组织的情况下识别驱动肿瘤发生的体细胞突变的指南,包括变异检测和筛选。我们还讨论了我们基因panel生成的纳入标准。此外,我们使用Cox回归模型在总生存和无病生存的背景下评估单个基因的预后影响。这些分析证实了常用生物标志物的作用,并揭示了诸如……等有争议的基因。应用这些指南,我们创建了一个新的基因panel来研究273例患者中CRC的发生和进展。我们全面的生物标志物集包括266个可能在疾病不同阶段进展中起作用的基因。追踪肿瘤的发育状态及其抗性,对于患者分层和精准临床实践中的可靠决策至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda5/5823670/ad91b98c86f7/oncotarget-09-9043-g001a.jpg

相似文献

1
Analysis of a gene panel for targeted sequencing of colorectal cancer samples.
Oncotarget. 2018 Jan 10;9(10):9043-9060. doi: 10.18632/oncotarget.24138. eCollection 2018 Feb 6.
7
Overview of resistance to systemic therapy in patients with breast cancer.
Adv Exp Med Biol. 2007;608:1-22. doi: 10.1007/978-0-387-74039-3_1.
8
Performance of Next-Generation Sequencing for the Detection of Microsatellite Instability in Colorectal Cancer With Deficient DNA Mismatch Repair.
Gastroenterology. 2021 Sep;161(3):814-826.e7. doi: 10.1053/j.gastro.2021.05.007. Epub 2021 May 13.
10
DNA methylation biomarkers in colorectal cancer: Clinical applications for precision medicine.
Int J Cancer. 2022 Dec 15;151(12):2068-2081. doi: 10.1002/ijc.34186. Epub 2022 Jul 9.

引用本文的文献

3
Synergistic cytotoxicity of perifosine and ABT-737 to colon cancer cells.
J Cell Mol Med. 2023 Jan;27(1):76-88. doi: 10.1111/jcmm.17636. Epub 2022 Dec 15.
4
ERH Interacts With EIF2α and Regulates the EIF2α/ATF4/CHOP Pathway in Bladder Cancer Cells.
Front Oncol. 2022 Jun 14;12:871687. doi: 10.3389/fonc.2022.871687. eCollection 2022.
6
Emerging trends in colorectal cancer: Dysregulated signaling pathways (Review).
Int J Mol Med. 2021 Mar;47(3). doi: 10.3892/ijmm.2021.4847. Epub 2021 Jan 7.
7
Artificial intelligence (AI) and big data in cancer and precision oncology.
Comput Struct Biotechnol J. 2020 Aug 28;18:2300-2311. doi: 10.1016/j.csbj.2020.08.019. eCollection 2020.

本文引用的文献

1
Sequencing and de novo assembly of 150 genomes from Denmark as a population reference.
Nature. 2017 Aug 3;548(7665):87-91. doi: 10.1038/nature23264. Epub 2017 Jul 26.
3
Dietary glycemic and insulin scores and colorectal cancer survival by tumor molecular biomarkers.
Int J Cancer. 2017 Jun 15;140(12):2648-2656. doi: 10.1002/ijc.30683. Epub 2017 Mar 28.
5
A scored human protein-protein interaction network to catalyze genomic interpretation.
Nat Methods. 2017 Jan;14(1):61-64. doi: 10.1038/nmeth.4083. Epub 2016 Nov 28.
6
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
7
KEGG as a reference resource for gene and protein annotation.
Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62. doi: 10.1093/nar/gkv1070. Epub 2015 Oct 17.
8
A global reference for human genetic variation.
Nature. 2015 Oct 1;526(7571):68-74. doi: 10.1038/nature15393.
9
Precision medicine in colorectal cancer: the molecular profile alters treatment strategies.
Ther Adv Med Oncol. 2015 Sep;7(5):252-262. doi: 10.1177/1758834015591952. Epub 2015 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验