Wang Niya, Chen Lulu, Wang Yue
Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA.
Methods Mol Biol. 2018;1751:223-236. doi: 10.1007/978-1-4939-7710-9_16.
Tissue heterogeneity is both a major confounding factor and an underexploited information source. While a handful of reports have demonstrated the potential of supervised methods to deconvolve tissue heterogeneity, these approaches require a priori information on the marker genes or composition of known subpopulations. To address the critical problem of the absence of validated marker genes for many (including novel) subpopulations, we develop a novel unsupervised deconvolution method, Convex Analysis of Mixtures (CAM), within a well-grounded mathematical framework, to dissect mixed gene expressions in heterogeneous tissue samples. To facilitate the utility of this method, we implement an R-Java CAM package that provides comprehensive analytic functions and graphic user interface (GUI).
组织异质性既是一个主要的混杂因素,也是一个未被充分利用的信息来源。虽然少数报告已经证明了监督方法在解卷积组织异质性方面的潜力,但这些方法需要关于标记基因或已知亚群组成的先验信息。为了解决许多(包括新的)亚群缺乏经过验证的标记基因这一关键问题,我们在一个坚实的数学框架内开发了一种新的无监督解卷积方法——混合凸分析(CAM),以剖析异质组织样本中的混合基因表达。为了便于该方法的应用,我们实现了一个R - Java CAM软件包,它提供了全面的分析功能和图形用户界面(GUI)。