Suppr超能文献

分子异质性的数学建模与反卷积识别复杂组织中的新亚群

Mathematical Modeling and Deconvolution of Molecular Heterogeneity Identifies Novel Subpopulations in Complex Tissues.

作者信息

Wang Niya, Chen Lulu, Wang Yue

机构信息

Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA.

出版信息

Methods Mol Biol. 2018;1751:223-236. doi: 10.1007/978-1-4939-7710-9_16.

Abstract

Tissue heterogeneity is both a major confounding factor and an underexploited information source. While a handful of reports have demonstrated the potential of supervised methods to deconvolve tissue heterogeneity, these approaches require a priori information on the marker genes or composition of known subpopulations. To address the critical problem of the absence of validated marker genes for many (including novel) subpopulations, we develop a novel unsupervised deconvolution method, Convex Analysis of Mixtures (CAM), within a well-grounded mathematical framework, to dissect mixed gene expressions in heterogeneous tissue samples. To facilitate the utility of this method, we implement an R-Java CAM package that provides comprehensive analytic functions and graphic user interface (GUI).

摘要

组织异质性既是一个主要的混杂因素,也是一个未被充分利用的信息来源。虽然少数报告已经证明了监督方法在解卷积组织异质性方面的潜力,但这些方法需要关于标记基因或已知亚群组成的先验信息。为了解决许多(包括新的)亚群缺乏经过验证的标记基因这一关键问题,我们在一个坚实的数学框架内开发了一种新的无监督解卷积方法——混合凸分析(CAM),以剖析异质组织样本中的混合基因表达。为了便于该方法的应用,我们实现了一个R - Java CAM软件包,它提供了全面的分析功能和图形用户界面(GUI)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验