Suppr超能文献

一种聚合物封装策略,用于合成多孔氮掺杂碳纳米球负载的金属孤立单原子位点催化剂。

A Polymer Encapsulation Strategy to Synthesize Porous Nitrogen-Doped Carbon-Nanosphere-Supported Metal Isolated-Single-Atomic-Site Catalysts.

机构信息

Department of Chemistry, Tsinghua University, Beijing, 100084, China.

Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Adv Mater. 2018 Apr;30(15):e1706508. doi: 10.1002/adma.201706508. Epub 2018 Mar 6.

Abstract

A novel polymer encapsulation strategy to synthesize metal isolated-single-atomic-site (ISAS) catalysts supported by porous nitrogen-doped carbon nanospheres is reported. First, metal precursors are encapsulated in situ by polymers through polymerization; then, metal ISASs are created within the polymer-derived p-CN nanospheres by controlled pyrolysis at high temperature (200-900 °C). Transmission electron microscopy and N sorption results reveal this material to exhibit a nanospheric morphology, a high surface area (≈380 m g ), and a porous structure (with micropores and mesopores). Characterization by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure confirms the metal to be present as metal ISASs. This methodology is applicable to both noble and nonprecious metals (M-ISAS/p-CN, M = Co, Ni, Cu, Mn, Pd, etc.). In particular, the Co-ISAS/p-CN nanospheres obtained using this method show comparable (E = 0.838 V) electrochemical oxygen reduction activity to commercial Pt/C with 20 wt% Pt loading (E = 0.834 V) in alkaline media, superior methanol tolerance, and outstanding stability, even after 5000 cycles.

摘要

本文报道了一种新颖的聚合物封装策略,用于合成负载于多孔氮掺杂碳纳米球中的金属孤立单原子位点(ISAS)催化剂。首先,通过聚合反应将金属前驱体原位封装在聚合物中;然后,通过在高温(200-900°C)下进行可控热解,在聚合物衍生的 p-CN 纳米球内形成金属 ISAS。透射电子显微镜和氮气吸附结果表明,该材料具有纳米球形态、高比表面积(≈380 m²/g)和多孔结构(具有微孔和介孔)。通过像差校正高角环形暗场扫描透射电子显微镜和 X 射线吸收精细结构的表征证实,金属以金属 ISAS 的形式存在。该方法适用于贵金属和非贵金属(M-ISAS/p-CN,M = Co、Ni、Cu、Mn、Pd 等)。特别是,通过该方法获得的 Co-ISAS/p-CN 纳米球在碱性介质中表现出与商业 Pt/C(负载 20wt%Pt,E = 0.834 V)相当的电化学氧还原活性(E = 0.838 V),具有优异的甲醇耐受性和出色的稳定性,甚至在 5000 次循环后仍保持稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验