Goodenough David, Levy Josh, Olafsdottir Hildur, Olafsson Ingvi
Department of Radiology, The George Washington University, NW Washington, DC, USA.
The Institute For Radiological Image Sciences, Myersville, MD, USA.
J Appl Clin Med Phys. 2018 May;19(3):291-300. doi: 10.1002/acm2.12297. Epub 2018 Mar 6.
This paper describes Development of a Phantom for Tomosynthesis with Potential for Automated Analysis via the Cloud. Several studies are underway to investigate the effectiveness of Tomosynthesis Mammographic Image Screening, including the large TMIST project as funded by the National Cancer Institute https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/tmist. The development of the phantom described in this paper follows initiatives from the FDA, the AAPM TG245 task group, and European Reference Organization (EUREF) for Quality Assured Breast Screening and Diagnostic Services Committee report noting, that no formal endorsement nor recommendation for use has been sought, or granted by any of these groups. This paper reports on the possibility of using this newly developed Tomosynthesis Phantom for Quality Assurance, field testing of image performance, including remote monitoring of DBT system performance, e.g., via transmission over the cloud. The phantom includes tests for: phantom positioning and alignment (important for remote analysis), scan geometry (x and y), chest wall offset, scan slice width and Slice Sensitivity Profile (SSP(z)) slice geometry (slice width), scan slice incrementation (z), z axis geometry bead, low contrast detectability using low contrast spheres, spatial resolution via Point Spread Function (PSF), Image uniformity, Signal to Noise Ratio (SNR), and Contrast to Noise Ratio (CNR) via readings over an Aluminum square. The phantom is designed for use with automated analysis via transmission of images over the cloud and the analysis package includes test of positioning accuracy (roll, pitch, and yaw). Data are shown from several commercial Tomosynthesis Scanners including Fuji, GE, Hologic, IMS-Giotti, and Siemens; however, the focus of this paper is on phantom design, and not in general aimed at direct commercial comparisons, and wherever possible the identity of the data is anonymized. Results of automated analysis of the phantom are shown, and it is demonstrated that reliable analysis of such a phantom can be achieved remotely, including transmission of data through the cloud.
本文介绍了一种用于断层合成的体模的开发,该体模具有通过云进行自动分析的潜力。多项研究正在进行中,以调查断层合成乳腺X线图像筛查的有效性,包括由美国国立癌症研究所资助的大型TMIST项目(https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/tmist)。本文所述体模的开发遵循了美国食品药品监督管理局(FDA)、医学物理师协会(AAPM)TG245任务组以及欧洲参考组织(EUREF)关于质量保证乳腺筛查和诊断服务委员会报告的倡议,需要注意的是,这些组织均未寻求或给予对该体模使用的正式认可或推荐。本文报告了使用这种新开发的断层合成体模进行质量保证、图像性能现场测试的可能性,包括通过云传输对数字乳腺断层合成(DBT)系统性能进行远程监测。该体模包括以下测试:体模定位与对齐(对远程分析很重要)、扫描几何形状(x和y)、胸壁偏移、扫描切片宽度和切片灵敏度分布(SSP(z))切片几何形状(切片宽度)、扫描切片增量(z)、z轴几何珠、使用低对比度球体的低对比度可探测性、通过点扩散函数(PSF)的空间分辨率、图像均匀性、信噪比(SNR)以及通过在铝方块上读数得到的对比度噪声比(CNR)。该体模设计用于通过云传输图像进行自动分析,分析软件包包括定位精度测试(横滚、俯仰和偏航)。展示了来自包括富士、通用电气、豪洛捷、IMS - 乔蒂和西门子在内几家商用断层合成扫描仪的数据;然而,本文的重点是体模设计,并非一般旨在进行直接的商业比较,并且只要有可能,数据的身份就会被匿名化。展示了该体模自动分析的结果,并证明可以通过云远程实现对这种体模的可靠分析,包括数据传输。