Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan.
J Am Chem Soc. 2018 Mar 14;140(10):3784-3790. doi: 10.1021/jacs.8b00426. Epub 2018 Mar 6.
To understand how intracellular proteins respond to oxidative stresses, the redox status of the target protein, as well as the intracellular redox potential ( E), which is defined by the concentrations of reduced and oxidized glutathione, should be observed simultaneously within living cells. In this study, we developed a method that can monitor the redox status of thioredoxin (Trx) and E by direct NMR observation of Trx and glutathione within living cells. Unlike the midpoint potential of Trx measured in vitro (∼ -300 mV), the intracellular Trx exhibited the redox transition at E between -250 and -200 mV, the range known to trigger the oxidative stress-mediated signalings. Furthermore, we quantified the contribution of Trx reductase to the redox status of Trx, demonstrating that the redox profile of Trx is determined by the interplay between the elevation of E and the reduction by Trx reductase and other endogenous molecules.
为了了解细胞内蛋白质如何应对氧化应激,需要同时观察目标蛋白质的氧化还原状态以及细胞内氧化还原电势(E),E 由还原型和氧化型谷胱甘肽的浓度定义。在这项研究中,我们开发了一种方法,可以通过直接在活细胞内观察硫氧还蛋白(Trx)和谷胱甘肽来监测 Trx 和 E 的氧化还原状态。与体外测量的 Trx 中点电位(约-300 mV)不同,细胞内 Trx 在 E 处表现出氧化还原转换,E 值在-250 至-200 mV 之间,这是已知触发氧化应激介导信号的范围。此外,我们量化了 Trx 还原酶对 Trx 氧化还原状态的贡献,表明 Trx 的氧化还原谱由 E 的升高和 Trx 还原酶及其他内源性分子的还原之间的相互作用决定。