Suppr超能文献

用于 MEG 的高精度解剖学。

High precision anatomy for MEG.

机构信息

Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London, WC1N 3BG, UK.

Electronic Engineering Department, Universidad de Antioquia, Medellín, Colombia.

出版信息

Neuroimage. 2014 Feb 1;86:583-91. doi: 10.1016/j.neuroimage.2013.07.065. Epub 2013 Aug 1.

Abstract

Precise MEG estimates of neuronal current flow are undermined by uncertain knowledge of the head location with respect to the MEG sensors. This is either due to head movements within the scanning session or systematic errors in co-registration to anatomy. Here we show how such errors can be minimized using subject-specific head-casts produced using 3D printing technology. The casts fit the scalp of the subject internally and the inside of the MEG dewar externally, reducing within session and between session head movements. Systematic errors in matching to MRI coordinate system are also reduced through the use of MRI-visible fiducial markers placed on the same cast. Bootstrap estimates of absolute co-registration error were of the order of 1mm. Estimates of relative co-registration error were <1.5mm between sessions. We corroborated these scalp based estimates by looking at the MEG data recorded over a 6month period. We found that the between session sensor variability of the subject's evoked response was of the order of the within session noise, showing no appreciable noise due to between-session movement. Simulations suggest that the between-session sensor level amplitude SNR improved by a factor of 5 over conventional strategies. We show that at this level of coregistration accuracy there is strong evidence for anatomical models based on the individual rather than canonical anatomy; but that this advantage disappears for errors of greater than 5mm. This work paves the way for source reconstruction methods which can exploit very high SNR signals and accurate anatomical models; and also significantly increases the sensitivity of longitudinal studies with MEG.

摘要

由于对头部相对于 MEG 传感器的位置的不确定知识,精确的 MEG 估计神经元电流会受到影响。这要么是由于在扫描过程中头部移动,要么是由于与解剖结构的配准存在系统误差。在这里,我们展示了如何使用 3D 打印技术制作的特定于主体的头罩来最小化这些误差。这些头罩内部贴合头皮,外部贴合 MEG 杜瓦,减少了扫描期间和扫描之间的头部移动。通过在同一头罩上放置 MRI 可见基准标记,也减少了与 MRI 坐标系匹配的系统误差。绝对配准误差的引导估计约为 1 毫米。会话之间的相对配准误差<1.5 毫米。我们通过观察记录了 6 个月的 MEG 数据来证实这些基于头皮的估计。我们发现,在会话之间,被试诱发反应的传感器变化量与会话内噪声相当,表明由于会话间运动而没有明显的噪声。模拟表明,在会话间传感器水平幅度 SNR 提高了 5 倍以上常规策略。我们表明,在这种配准精度水平上,基于个体而非经典解剖结构的解剖模型具有很强的证据;但是,当配准误差大于 5 毫米时,这种优势就会消失。这项工作为可以利用非常高 SNR 信号和精确解剖模型的源重建方法铺平了道路;并大大提高了 MEG 的纵向研究的灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d002/3898940/41d04b341151/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验