Suppr超能文献

基于 T2*-加权的脑胶质瘤分级药代动力学成像的直方图分析。

Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.

机构信息

School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Research Center of Translational Imaging, College of Medicine, Taipei Medical University, Taipei, Taiwan; Radiogenomic Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.

Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.

出版信息

Comput Methods Programs Biomed. 2018 Mar;155:19-27. doi: 10.1016/j.cmpb.2017.11.011. Epub 2017 Nov 15.

Abstract

BACKGROUND AND OBJECTIVE

To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (K) for glioma grading and to explore the diagnostic performance of the histogram analysis of K and blood plasma volume (v).

METHODS

We recruited 31 and 11 patients with high- and low-grade gliomas, respectively. The histogram parameters of K and v, derived from the first-pass pharmacokinetic modeling based on the T2* dynamic susceptibility-weighted contrast-enhanced perfusion-weighted magnetic resonance imaging (T2* DSC-PW-MRI) from the entire tumor volume, were evaluated for differentiating glioma grades.

RESULTS

Histogram parameters of K and v showed significant differences between high- and low-grade gliomas and exhibited significant correlations with tumor grades. The mean K derived from the T2* DSC-PW-MRI had the highest sensitivity and specificity for differentiating high-grade gliomas from low-grade gliomas compared with other histogram parameters of K and v.

CONCLUSIONS

Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor K measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors.

摘要

背景与目的

探讨基于 T2*-加权渗透性参数容积转移常数(K)直方图分析对脑胶质瘤分级的可行性,并探讨 K 和血容量(v)直方图分析的诊断性能。

方法

我们分别招募了 31 例和 11 例高级别和低级别胶质瘤患者。基于整个肿瘤体积的 T2动态磁敏感对比增强灌注加权磁共振成像(T2 DSC-PW-MRI)的首过药代动力学建模,评估了 K 和 v 的直方图参数,以区分胶质瘤级别。

结果

高级别和低级别胶质瘤之间的 K 和 v 的直方图参数存在显著差异,并且与肿瘤分级显著相关。与其他 K 和 v 的直方图参数相比,来自 T2* DSC-PW-MRI 的平均 K 对区分高级别胶质瘤和低级别胶质瘤具有最高的敏感性和特异性。

结论

基于 T2*-加权药代动力学成像的直方图分析有助于脑胶质瘤分级。整个肿瘤 K 测量的直方图参数可提供更高的准确性,并提供有关微血管通透性变化的附加信息,以识别高级别脑肿瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验