Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China.
Int J Mol Med. 2018 Jun;41(6):3316-3326. doi: 10.3892/ijmm.2018.3522. Epub 2018 Feb 28.
Intervertebral disc (IVD) degeneration (IDD) is a widely recognized contributor to low back pain. Mechanical stress is a crucial etiological factor of IDD. During the process of IDD, a vicious circle is formed between abnormal mechanical stress and the damage of disc structure and function. Notably, the pathological process of IDD is mediated by the phenotypic shift of IVD cells from an extracellular matrix anabolic phenotype to a catabolic and pro-inflammatory phenotype. Therefore, the effects of mechanical stress on the initiation and progression of IDD depend on the mechanobiology of IVD cells. Recently, disc cell senescence was identified as a new hallmark of IDD. However, the senescent response of disc cells to mechanical stress remains unknown. In this study, we found that prolonged exposure of cyclic mechanical tension (CMT) with unphysiological magnitude generated by the Flexercell tension system markedly induced premature senescence of nucleus pulposus (NP) cells. CMT augmented the DNA damage of NP cells, but did not affect the redox homeostasis of NP cells. Moreover, the p53-p21-retinoblastoma protein (Rb) pathway was activated by CMT to mediate the CMT-induced premature senescence of NP cells. The findings are beneficial to understanding the mechanism of disc cell senescence and the mechanobiology of disc cells further. It suggests that prolonged abnormal mechanical stress accelerates the establishment and progression of disc cell senescence and consequently impairs the structural and functional homeostasis of IVDs to cause IDD. Preventing the pro-senescent effect of mechanical stress on IVD cells is a promising approach to delay the process of IDD.
椎间盘(IVD)退变(IDD)是引起下腰痛的公认原因。机械应力是 IDD 的一个重要病因。在 IDD 的过程中,异常的机械应力与椎间盘结构和功能的损伤之间形成了一个恶性循环。值得注意的是,IDD 的病理过程是由 IVD 细胞从细胞外基质合成表型向分解代谢和促炎表型的表型转变介导的。因此,机械应力对 IDD 起始和进展的影响取决于 IVD 细胞的力学生物学。最近,椎间盘细胞衰老被确定为 IDD 的一个新标志。然而,椎间盘细胞对机械应力的衰老反应尚不清楚。在这项研究中,我们发现 Flexercell 张力系统产生的非生理性幅度的循环机械张力(CMT)长时间作用会显著诱导髓核(NP)细胞过早衰老。CMT 增加了 NP 细胞的 DNA 损伤,但不影响 NP 细胞的氧化还原平衡。此外,CMT 通过激活 p53-p21-Rb 通路来介导 NP 细胞的 CMT 诱导的过早衰老。这些发现有助于进一步了解椎间盘细胞衰老的机制和椎间盘细胞的力学生物学。它表明,长时间的异常机械应力加速了椎间盘细胞衰老的建立和进展,从而破坏了 IVD 的结构和功能平衡,导致 IDD。防止机械应力对 IVD 细胞的促衰老作用是延缓 IDD 进程的一种有前途的方法。