Suppr超能文献

自动驾驶车辆中的驾驶员警觉性:危险检测失败是迟早的事。

Driver Vigilance in Automated Vehicles: Hazard Detection Failures Are a Matter of Time.

机构信息

Texas Tech University, Lubbock.

出版信息

Hum Factors. 2018 Jun;60(4):465-476. doi: 10.1177/0018720818761711. Epub 2018 Mar 7.

Abstract

OBJECTIVE

The primary aim of the current study was to determine whether monitoring the roadway for hazards during automated driving results in a vigilance decrement.

BACKGROUND

Although automated vehicles are relatively novel, the nature of human-automation interaction within them has the classic hallmarks of a vigilance task. Drivers must maintain attention for prolonged periods of time to detect and respond to rare and unpredictable events, for example, roadway hazards that automation may be ill equipped to detect. Given the similarity with traditional vigilance tasks, we predicted that drivers of a simulated automated vehicle would demonstrate a vigilance decrement in hazard detection performance.

METHOD

Participants "drove" a simulated automated vehicle for 40 minutes. During that time, their task was to monitor the roadway for roadway hazards.

RESULTS

As predicted, hazard detection rate declined precipitously, and reaction times slowed as the drive progressed. Further, subjective ratings of workload and task-related stress indicated that sustained monitoring is demanding and distressing and it is a challenge to maintain task engagement.

CONCLUSION

Monitoring the roadway for potential hazards during automated driving results in workload, stress, and performance decrements similar to those observed in traditional vigilance tasks.

APPLICATION

To the degree that vigilance is required of automated vehicle drivers, performance errors and associated safety risks are likely to occur as a function of time on task. Vigilance should be a focal safety concern in the development of vehicle automation.

摘要

目的

本研究的主要目的是确定在自动驾驶过程中监测道路危险是否会导致警觉度下降。

背景

尽管自动驾驶汽车相对较新,但它们内部的人机交互性质具有警觉任务的典型特征。例如,自动化可能无法检测到的道路危险,驾驶员必须长时间保持注意力,以检测和响应罕见且不可预测的事件。鉴于与传统警觉任务的相似性,我们预测模拟自动驾驶汽车的驾驶员在危险检测性能方面会出现警觉度下降。

方法

参与者“驾驶”模拟自动驾驶汽车 40 分钟。在此期间,他们的任务是监测道路上的道路危险。

结果

正如预测的那样,危险检测率急剧下降,随着驾驶的进行,反应时间也减慢。此外,工作负荷和与任务相关的压力的主观评分表明,持续监控要求高且令人痛苦,难以保持任务参与度。

结论

在自动驾驶过程中监测道路上潜在的危险会导致与传统警觉任务中观察到的类似的工作负荷、压力和性能下降。

应用

在一定程度上,自动驾驶汽车驾驶员需要警觉,随着任务时间的推移,性能错误和相关的安全风险可能会发生。在车辆自动化的开发中,警觉度应成为关注的焦点安全问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验