Suppr超能文献

金属有机框架成核与生长的原位、时间分辨及机理研究

In Situ, Time-Resolved, and Mechanistic Studies of Metal-Organic Framework Nucleation and Growth.

作者信息

Van Vleet Mary J, Weng Tingting, Li Xinyi, Schmidt J R

机构信息

Theoretical Chemistry Institute and Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.

出版信息

Chem Rev. 2018 Apr 11;118(7):3681-3721. doi: 10.1021/acs.chemrev.7b00582. Epub 2018 Mar 7.

Abstract

The vast chemical and structural diversity of metal-organic frameworks (MOFs) opens up the exciting possibility of "crystal engineering" MOFs tailored for particular catalytic or separation applications. Yet the process of reaction discovery, optimization, and scale-up of MOF synthesis remains extremely challenging, presenting significant obstacles to the synthetic realization of many otherwise promising MOF structures. Recently, significant new insights into the fundamental processes governing MOF nucleation and growth, as well as the relationship between reaction parameters and synthetic outcome, have been derived using powerful in situ, time-resolved and/or mechanistic studies of MOF crystallization. This Review provides a summary and associated critical analysis of the results of these and other related "direct" studies of MOF nucleation and growth, with a particular emphasis on the recent advances in instrument technologies that have enabled such studies and on the major hypotheses, theories, and models that have been used to explain MOF formation. We conclude with a summary of the major insights that have been gained from the work summarized in this Review, outlining our own perspective on potential fruitful new directions for investigation.

摘要

金属有机框架材料(MOFs)具有巨大的化学和结构多样性,这为“晶体工程”开辟了令人兴奋的可能性,即定制适用于特定催化或分离应用的MOFs。然而,MOF合成的反应发现、优化和放大过程仍然极具挑战性,给许多原本很有前景的MOF结构的合成实现带来了重大障碍。最近,通过对MOF结晶进行强大的原位、时间分辨和/或机理研究,人们对控制MOF成核和生长的基本过程以及反应参数与合成结果之间的关系有了重要的新认识。本综述总结并批判性分析了这些以及其他相关的MOF成核和生长“直接”研究结果,特别强调了实现此类研究的仪器技术的最新进展,以及用于解释MOF形成的主要假设、理论和模型。我们最后总结了从本综述所总结的工作中获得的主要见解,概述了我们自己对潜在富有成果的新研究方向的看法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验