Suppr超能文献

基于痘病毒的埃博拉病毒表达 GP 和 VP40 蛋白疫苗候选物的免疫原性和疗效的差异。

Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins.

机构信息

Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.

Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.

出版信息

J Virol. 2018 May 14;92(11). doi: 10.1128/JVI.00363-18. Print 2018 Jun 1.

Abstract

and species cause a severe disease in humans and nonhuman primates (NHPs) characterized by a high mortality rate. There are no licensed therapies or vaccines against Ebola virus disease (EVD), and the recent 2013 to 2016 outbreak in West Africa highlighted the need for EVD-specific medical countermeasures. Here, we generated and characterized head-to-head the immunogenicity and efficacy of five vaccine candidates against Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing either the virus glycoprotein (GP) or GP together with the virus protein 40 (VP40) forming virus-like particles (VLPs). In a human monocytic cell line, the different MVA vectors (termed MVA-EBOVs and MVA-SUDVs) triggered robust innate immune responses, with production of beta interferon (IFN-β), proinflammatory cytokines, and chemokines. Additionally, several innate immune cells, such as dendritic cells, neutrophils, and natural killer cells, were differentially recruited in the peritoneal cavity of mice inoculated with MVA-EBOVs. After immunization of mice with a homologous prime/boost protocol (MVA/MVA), total IgG antibodies against GP or VP40 from Zaire and Sudan ebolavirus were differentially induced by these vectors, which were mainly of the IgG1 and IgG3 isotypes. Remarkably, an MVA-EBOV construct coexpressing GP and VP40 protected chimeric mice challenged with EBOV to a greater extent than a vector expressing GP alone. These results support the consideration of MVA-EBOVs and MVA-SUDVs expressing GP and VP40 and producing VLPs as best-in-class potential vaccine candidates against EBOV and SUDV. EBOV and SUDV cause a severe hemorrhagic fever affecting humans and NHPs. Since their discovery in 1976, they have caused several sporadic epidemics, with the recent outbreak in West Africa from 2013 to 2016 being the largest and most severe, with more than 11,000 deaths being reported. Although some vaccines are in advanced clinical phases, less expensive, safer, and more effective licensed vaccines are desirable. We generated and characterized head-to-head the immunogenicity and efficacy of five novel vaccines against EBOV and SUDV based on the poxvirus MVA expressing GP or GP and VP40. The expression of GP and VP40 leads to the formation of VLPs. These MVA-EBOV and MVA-SUDV recombinants triggered robust innate and humoral immune responses in mice. Furthermore, MVA-EBOV recombinants expressing GP and VP40 induced high protection against EBOV in a mouse challenge model. Thus, MVA expressing GP and VP40 and producing VLPs is a promising vaccine candidate against EBOV and SUDV.

摘要

并 种引起人类和非人灵长类动物(NHPs)的严重疾病,死亡率很高。目前尚无针对埃博拉病毒病(EVD)的许可疗法或疫苗,最近 2013 年至 2016 年西非的疫情突显了需要针对 EVD 的特定医疗对策。在这里,我们基于高度减毒的痘病毒载体修饰的牛痘病毒安卡拉(MVA),生成并针对来自扎伊尔埃博拉病毒(EBOV)和苏丹埃博拉病毒(SUDV)的五种疫苗候选物的免疫原性和功效进行了头对头的分析,这些疫苗候选物分别表达病毒糖蛋白(GP)或与病毒蛋白 40(VP40)一起形成病毒样颗粒(VLPs)。在人类单核细胞系中,不同的 MVA 载体(称为 MVA-EBOVs 和 MVA-SUDVs)引发了强大的先天免疫反应,产生了β干扰素(IFN-β),促炎细胞因子和趋化因子。此外,几种先天免疫细胞,例如树突状细胞,中性粒细胞和自然杀伤细胞,在接种 MVA-EBOVs 的小鼠的腹腔中被差异招募。用同源的初始/加强方案(MVA/MVA)对小鼠进行免疫接种后,这些载体可诱导针对来自扎伊尔和苏丹埃博拉病毒的总 IgG 抗体针对 GP 或 VP40,这些抗体主要为 IgG1 和 IgG3 同种型。值得注意的是,与单独表达 GP 的载体相比,共表达 GP 和 VP40 的 MVA-EBOV 构建体可更大程度地保护嵌合小鼠免受 EBOV 的侵害。这些结果支持将共表达 GP 和 VP40 并产生 VLPs 的 MVA-EBOVs 和 MVA-SUDVs 视为针对 EBOV 和 SUDV 的最佳类别潜在疫苗候选物。EBOV 和 SUDV 引起影响人类和 NHP 的严重出血热。自 1976 年发现以来,它们已引起几次散发性流行,最近 2013 年至 2016 年在西非的疫情是最大和最严重的,据报道有超过 11000 人死亡。尽管一些疫苗已处于临床后期阶段,但仍希望获得更便宜,更安全,更有效的许可疫苗。我们基于表达 GP 或 GP 和 VP40 的痘病毒 MVA 生成并对头对头分析了五种针对 EBOV 和 SUDV 的新型疫苗的免疫原性和功效。GP 和 VP40 的表达导致 VLPs 的形成。这些 MVA-EBOV 和 MVA-SUDV 重组体在小鼠中引发了强大的先天和体液免疫反应。此外,表达 GP 和 VP40 的 MVA-EBOV 重组体在小鼠挑战模型中诱导了针对 EBOV 的高保护作用。因此,表达 GP 和 VP40 并产生 VLPs 的 MVA 是针对 EBOV 和 SUDV 的有前途的疫苗候选物。

相似文献

2
Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles.
J Virol. 2017 May 12;91(11). doi: 10.1128/JVI.00343-17. Print 2017 Jun 1.
8
Recombinant Protein Filovirus Vaccines Protect Cynomolgus Macaques From Ebola, Sudan, and Marburg Viruses.
Front Immunol. 2021 Aug 18;12:703986. doi: 10.3389/fimmu.2021.703986. eCollection 2021.

引用本文的文献

1
Vaccinia Virus Vector Bivalent Norovirus Vaccine.
Viruses. 2025 Feb 9;17(2):237. doi: 10.3390/v17020237.
2
Heterologous mRNA/MVA delivering trimeric-RBD as effective vaccination regimen against SARS-CoV-2: COVARNA Consortium.
Emerg Microbes Infect. 2024 Dec;13(1):2387906. doi: 10.1080/22221751.2024.2387906. Epub 2024 Aug 8.
3
Rendezvous with Vaccinia Virus in the Post-smallpox Era: R&D Advances.
Viruses. 2023 Aug 15;15(8):1742. doi: 10.3390/v15081742.
4
Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases.
Signal Transduct Target Ther. 2023 Apr 7;8(1):149. doi: 10.1038/s41392-023-01408-5.
6
How to Inhibit Nuclear Factor-Kappa B Signaling: Lessons from Poxviruses.
Pathogens. 2022 Sep 18;11(9):1061. doi: 10.3390/pathogens11091061.
8
Viruses as tools in gene therapy, vaccine development, and cancer treatment.
Arch Virol. 2022 Jun;167(6):1387-1404. doi: 10.1007/s00705-022-05432-8. Epub 2022 Apr 24.

本文引用的文献

1
Phase 2 Placebo-Controlled Trial of Two Vaccines to Prevent Ebola in Liberia.
N Engl J Med. 2017 Oct 12;377(15):1438-1447. doi: 10.1056/NEJMoa1614067.
2
Vaccines against Ebola virus.
Vaccine. 2018 Aug 28;36(36):5454-5459. doi: 10.1016/j.vaccine.2017.07.054. Epub 2017 Aug 2.
3
Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus.
JCI Insight. 2017 Mar 23;2(6):e83527. doi: 10.1172/jci.insight.83527.
4
Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles.
J Virol. 2017 May 12;91(11). doi: 10.1128/JVI.00343-17. Print 2017 Jun 1.
6
Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development.
Adv Virus Res. 2017;97:187-243. doi: 10.1016/bs.aivir.2016.07.001. Epub 2016 Aug 1.
9
Ebola virus vaccines: Where do we stand?
Clin Immunol. 2016 Dec;173:44-49. doi: 10.1016/j.clim.2016.10.016. Epub 2016 Oct 28.
10
Ebola vaccines in clinical trial: The promising candidates.
Hum Vaccin Immunother. 2017 Jan 2;13(1):153-168. doi: 10.1080/21645515.2016.1225637. Epub 2016 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验