Suppr超能文献

木质纤维素生物质水解的同步加速器延时成像:通过蛋白质自发荧光追踪酶的定位以及利用微流控红外光谱对细胞壁进行生化修饰

Synchrotron Time-Lapse Imaging of Lignocellulosic Biomass Hydrolysis: Tracking Enzyme Localization by Protein Autofluorescence and Biochemical Modification of Cell Walls by Microfluidic Infrared Microspectroscopy.

作者信息

Devaux Marie-Françoise, Jamme Frédéric, André William, Bouchet Brigitte, Alvarado Camille, Durand Sylvie, Robert Paul, Saulnier Luc, Bonnin Estelle, Guillon Fabienne

机构信息

UR1268 Biopolymères Interactions et Assemblages, Institut National de la Recherche Agronomique Pays de la Loire, Nantes, France.

Synchrotron SOLEIL, Gif-Sur-Yvette, France.

出版信息

Front Plant Sci. 2018 Feb 20;9:200. doi: 10.3389/fpls.2018.00200. eCollection 2018.

Abstract

Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls. Multichannel autofluorescence imaging of the protein and phenolic compounds after excitation at 275 nm highlighted the presence or absence of enzymes on cell walls and made it possible to track them during the reaction. Image analysis was used to quantify the fluorescence intensity variations. Consistent variations in the enzyme concentration were found locally for cell cavities and their surrounding cell walls. Microfluidic FT-IR microspectroscopy allowed for time-lapse tracking of local changes in the polysaccharides in cell walls during degradation. Hemicellulose degradation was found to occur prior to cellulose degradation using a Celluclast® preparation. Combining the fluorescence and FT-IR information yielded the conclusion that enzymes did not bind to lignified cell walls, which were consequently not degraded. Fluorescence multiscale imaging and FT-IR microspectroscopy showed an unexpected variability both in the initial biochemical composition and the degradation pattern, highlighting micro-domains in the cell wall of a given cell. Fluorescence intensity quantification showed that the enzymes were not evenly distributed, and their amount increased progressively on degradable cell walls. During degradation, adjacent cells were separated and the cell wall fragmented until complete degradation.

摘要

追踪酶的定位并监测底物的局部生化修饰,应有助于解释木质纤维素植物细胞壁对酶促降解的抗性。使用传统成像技术的延时研究需要对酶进行标记,并追踪植物细胞壁中生物聚合物的生化修饰,而这并非易事。在本研究中,同步加速器设施被用于对木质纤维素生物质的酶促降解进行成像,而无需对酶或细胞壁进行标记。在275nm激发后对蛋白质和酚类化合物进行多通道自发荧光成像,突出了细胞壁上酶的存在与否,并使得在反应过程中对其进行追踪成为可能。图像分析用于量化荧光强度变化。发现在细胞腔及其周围细胞壁处,酶浓度存在局部一致的变化。微流控傅里叶变换红外光谱显微技术能够对降解过程中细胞壁多糖的局部变化进行延时追踪。使用纤维素酶制剂发现半纤维素降解先于纤维素降解。综合荧光和傅里叶变换红外光谱信息得出结论,酶不会结合到木质化细胞壁上,因此木质化细胞壁不会被降解。荧光多尺度成像和傅里叶变换红外光谱显微技术显示,在初始生化组成和降解模式方面均存在意想不到的变异性,突出了给定细胞细胞壁中的微区。荧光强度定量分析表明,酶分布不均,其数量在可降解细胞壁上逐渐增加。在降解过程中,相邻细胞分离,细胞壁破碎直至完全降解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68b9/5826215/d030da1202e4/fpls-09-00200-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验