FARE Laboratory, INRA, University of Reims Champagne-Ardenne, 51100, Reims, France.
BBF, INRA, Aix Marseille University, Polytech'Marseille, 13288, Marseille, France.
Sci Rep. 2017 Dec 19;7(1):17792. doi: 10.1038/s41598-017-17938-2.
Lignocellulosic biomass bioconversion is hampered by the structural and chemical complexity of the network created by cellulose, hemicellulose and lignin. Biological conversion of lignocellulose involves synergistic action of a large array of enzymes including the recently discovered lytic polysaccharide monooxygenases (LPMOs) that perform oxidative cleavage of cellulose. Using in situ imaging by synchrotron UV fluorescence, we have shown that the addition of AA9 LPMO (from Podospora anserina) to cellulases cocktail improves the progression of enzymes in delignified Miscanthus x giganteus as observed at tissular levels. In situ chemical monitoring of cell wall modifications performed by synchrotron infrared spectroscopy during enzymatic hydrolysis demonstrated that the boosting effect of the AA9 LPMO was dependent on the cellular type indicating contrasted recalcitrance levels in plant tissues. Our study provides a useful strategy for investigating enzyme dynamics and activity in plant cell wall to improve enzymatic cocktails aimed at expanding lignocelluloses biorefinery.
木质纤维素生物质的生物转化受到纤维素、半纤维素和木质素所构成的网络的结构和化学复杂性的阻碍。木质纤维素的生物转化涉及到大量酶的协同作用,包括最近发现的溶细胞多糖单加氧酶(LPMOs),它们对纤维素进行氧化裂解。通过同步加速器紫外线荧光的原位成像,我们已经表明,将 AA9 LPMO(来自 Podospora anserina)添加到纤维素酶混合物中,可以改善木质素脱除后的芒草组织水平上的酶的进展。在酶水解过程中通过同步加速器红外光谱进行的细胞壁修饰的原位化学监测表明,AA9 LPMO 的促进作用取决于细胞类型,这表明植物组织的抗降解能力存在差异。我们的研究为研究植物细胞壁中酶的动力学和活性提供了一种有用的策略,以提高旨在扩大木质纤维素生物精炼的酶混合物。