Suppr超能文献

生物能源作物工程:改善生物质中多糖特性和组成的主要遗传方法

Engineering of Bioenergy Crops: Dominant Genetic Approaches to Improve Polysaccharide Properties and Composition in Biomass.

作者信息

Brandon Andrew G, Scheller Henrik V

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States.

Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States.

出版信息

Front Plant Sci. 2020 Mar 11;11:282. doi: 10.3389/fpls.2020.00282. eCollection 2020.

Abstract

Large-scale, sustainable production of lignocellulosic bioenergy from biomass will depend on a variety of dedicated bioenergy crops. Despite their great genetic diversity, prospective bioenergy crops share many similarities in the polysaccharide composition of their cell walls, and the changes needed to optimize them for conversion are largely universal. Therefore, biomass modification strategies that do not depend on genetic background or require mutant varieties are extremely valuable. Due to their preferential fermentation and conversion by microorganisms downstream, the ideal bioenergy crop should contain a high proportion of C6-sugars in polysaccharides like cellulose, callose, galactan, and mixed-linkage glucans. In addition, the biomass should be reduced in inhibitors of fermentation like pentoses and acetate. Finally, the overall complexity of the plant cell wall should be modified to reduce its recalcitrance to enzymatic deconstruction in ways that do no compromise plant health or come at a yield penalty. This review will focus on progress in the use of a variety of genetically dominant strategies to reach these ideals. Due to the breadth and volume of research in the field of lignin bioengineering, this review will instead focus on approaches to improve polysaccharide component plant biomass. Carbohydrate content can be dramatically increased by transgenic overexpression of enzymes involved in cell wall polysaccharide biosynthesis. Additionally, the recalcitrance of the cell wall can be reduced via the overexpression of native or non-native carbohydrate active enzymes like glycosyl hydrolases or carbohydrate esterases. Some research in this area has focused on engineering plants that accumulate cell wall-degrading enzymes that are sequestered to organelles or only active at very high temperatures. The rationale being that, in order to avoid potential negative effects of cell wall modification during plant growth, the enzymes could be activated post-harvest, and post-maturation of the cell wall. A potentially significant limitation of this approach is that at harvest, the cell wall is heavily lignified, making the substrates for these enzymes inaccessible and their activity ineffective. Therefore, this review will only include research employing enzymes that are at least partially active under the ambient conditions of plant growth and cell wall development.

摘要

大规模、可持续地从生物质中生产木质纤维素生物能源将依赖于多种专用生物能源作物。尽管这些作物具有巨大的遗传多样性,但潜在的生物能源作物在其细胞壁的多糖组成上有许多相似之处,并且为优化其转化所需的变化在很大程度上是通用的。因此,不依赖遗传背景或不需要突变品种的生物质改良策略极其有价值。由于下游微生物对其具有优先发酵和转化作用,理想的生物能源作物在多糖(如纤维素、胼胝质、半乳聚糖和混合连接葡聚糖)中应含有高比例的C6糖。此外,生物质中应减少发酵抑制剂(如戊糖和乙酸盐)的含量。最后,应改变植物细胞壁的整体复杂性,以降低其对酶解的抗性,同时不损害植物健康或导致产量损失。本综述将重点关注使用各种遗传优势策略来实现这些理想目标的进展。由于木质素生物工程领域的研究范围广、数量多,本综述将转而关注改善植物生物质多糖成分的方法。通过转基因过量表达参与细胞壁多糖生物合成的酶,可以显著提高碳水化合物含量。此外,通过过量表达天然或非天然的碳水化合物活性酶(如糖基水解酶或碳水化合物酯酶),可以降低细胞壁的抗性。该领域的一些研究集中在工程改造植物,使其积累隔离在细胞器中或仅在非常高的温度下才具有活性的细胞壁降解酶。其基本原理是,为了避免植物生长过程中细胞壁修饰的潜在负面影响,这些酶可以在收获后和细胞壁成熟后被激活。这种方法的一个潜在重大限制是,在收获时,细胞壁高度木质化,使得这些酶的底物无法接触,其活性也无效。因此,本综述将只包括使用至少在植物生长和细胞壁发育的环境条件下具有部分活性的酶的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07e8/7078332/ab1a42c35aa0/fpls-11-00282-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验