Suppr超能文献

嗜热脂肪地芽孢杆菌 SG0.5JP17-16 漆酶的四个第二球残基通过氢键网络调节催化作用。

Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks.

机构信息

Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.

Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, 334 Building 6, University Park, Guangzhou, 510006, People's Republic of China.

出版信息

Appl Microbiol Biotechnol. 2018 May;102(9):4049-4061. doi: 10.1007/s00253-018-8875-y. Epub 2018 Mar 7.

Abstract

The multicopper oxidases catalyze 1-electron oxidation of four substrate molecules and concomitantly 4-electron reduction of dioxygen to water. The substrate loses the electrons at the type 1 copper (T1 Cu) site of the enzyme, while the dioxygen is reduced to water at the trinuclear copper center. A highly conserved Glu residue, which is at the dioxygen-entering channel, shuttles the proton to break the O-O bond of dioxygen. At the water-leaving channel, an Asp residue was found to be important in the protonation mechanism. In this study, laccase from Thermus thermophilus SG0.5JP17-16 (lacTT) was investigated to address how four second-sphere residues E356, E456, D106, and D423 affect the activity of the enzyme. Kinetic data indicate that catalytic activities of the enzyme are altered by site-directed mutagenesis on four second-sphere residues. The structural model of lacTT was generated by homology modeling. Structural and spectral data indicate that the E356 residue is situated at the substrate-binding site, responsible for the binding of the substrate and the geometry of the T1 Cu site by hydrogen-bonding networks; the E456 residue, located at the dioxygen-entering channel, plays a critical role in stabilizing the structure of all active copper centers and shuttling the proton to the trinuclear copper cluster (TNC) for the reductive reaction of dioxygen; the D106 and D423 residues are at the water-leaving channel, and they are important for the essential geometry of the TNC and the release of the water molecules. Altogether, this study contributes to the further understanding of the basic mechanism involving the oxidation of the substrate, electron transfer, and the reduction of dioxygen in lacTT.

摘要

多铜氧化酶催化四个底物分子的 1 电子氧化,并同时将二氧​​化​​物还原为水。底物在酶的 1 型铜(T1 Cu)位点失去电子,而二氧​​化​​物在三核铜中心被还原为水。一个高度保守的谷氨酸残基位于二氧​​化​​物进入通道,将质子转移以打破二氧​​化​​物的 O-O 键。在水离开通道中,发现一个天冬氨酸残基在质子化机制中很重要。在这项研究中,研究了嗜热栖热菌 SG0.5JP17-16 的漆酶(lacTT),以解决四个次球残基 E356、E456、D106 和 D423 如何影响酶的活性。动力学数据表明,通过四个次球残基的定点突变,酶的催化活性发生了改变。通过同源建模生成了 lacTT 的结构模型。结构和光谱数据表明,E356 残基位于底物结合位点,通过氢键网络负责底物的结合和 T1 Cu 位点的几何形状;E456 残基位于二氧​​化​​物进入通道,在稳定所有活性铜中心的结构和将质子转移到三核铜簇(TNC)以进行二氧​​化​​物的还原反应中起关键作用;D106 和 D423 残基位于水离开通道,对于 TNC 的基本几何形状和水分子的释放很重要。总之,这项研究有助于进一步了解涉及底物氧化、电子转移和 lacTT 中二氧​​化​​物还原的基本机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验