Suppr超能文献

基于表观弥散系数图的全瘤体直方图分析鉴别胸腺癌与淋巴瘤。

A Whole-Tumor Histogram Analysis of Apparent Diffusion Coefficient Maps for Differentiating Thymic Carcinoma from Lymphoma.

机构信息

Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.

Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.

出版信息

Korean J Radiol. 2018 Mar-Apr;19(2):358-365. doi: 10.3348/kjr.2018.19.2.358. Epub 2018 Feb 22.

Abstract

OBJECTIVE

To assess the performance of a whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in differentiating thymic carcinoma from lymphoma, and compare it with that of a commonly used hot-spot region-of-interest (ROI)-based ADC measurement.

MATERIALS AND METHODS

Diffusion weighted imaging data of 15 patients with thymic carcinoma and 13 patients with lymphoma were retrospectively collected and processed with a mono-exponential model. ADC measurements were performed by using a histogram-based and hot-spot-ROI-based approach. In the histogram-based approach, the following parameters were generated: mean ADC (ADC), median ADC (ADC), 10th and 90th percentile of ADC (ADC and ADC), kurtosis, and skewness. The difference in ADCs between thymic carcinoma and lymphoma was compared using a test. Receiver operating characteristic analyses were conducted to determine and compare the differentiating performance of ADCs.

RESULTS

Lymphoma demonstrated significantly lower ADC, ADC, ADC, ADC, and hot-spot-ROI-based mean ADC than those found in thymic carcinoma (all values < 0.05). There were no differences found in the kurtosis ( = 0.412) and skewness ( = 0.273). The ADC demonstrated optimal differentiating performance (cut-off value, 0.403 × 10 mm/s; area under the receiver operating characteristic curve [AUC], 0.977; sensitivity, 92.3%; specificity, 93.3%), followed by the ADC, ADC, ADC, and hot-spot-ROI-based mean ADC. The AUC of ADC was significantly higher than that of the hot spot ROI based ADC (0.977 vs. 0.797, = 0.036).

CONCLUSION

Compared with the commonly used hot spot ROI based ADC measurement, a histogram analysis of ADC maps can improve the differentiating performance between thymic carcinoma and lymphoma.

摘要

目的

评估表观扩散系数(ADC)图全瘤直方图分析在鉴别胸腺癌与淋巴瘤中的性能,并与常用的热点感兴趣区(ROI)-基于 ADC 测量进行比较。

材料与方法

回顾性收集 15 例胸腺癌和 13 例淋巴瘤患者的弥散加权成像数据,并采用单指数模型进行处理。采用直方图和热点 ROI 两种方法进行 ADC 测量。在直方图方法中,生成以下参数:平均 ADC(ADC)、中位数 ADC(ADC)、ADC 的第 10 百分位数和第 90 百分位数(ADC 和 ADC)、峰度和偏度。使用 t 检验比较胸腺癌和淋巴瘤之间 ADC 的差异。进行受试者工作特征分析以确定和比较 ADC 的鉴别性能。

结果

淋巴瘤的 ADC、ADC、ADC、ADC 和热点 ROI 平均 ADC 均显著低于胸腺癌(所有 P 值均<0.05)。峰度(=0.412)和偏度(=0.273)无差异。ADC 表现出最佳的鉴别性能(截断值,0.403×10 mm/s;受试者工作特征曲线下面积 [AUC],0.977;敏感性,92.3%;特异性,93.3%),其次是 ADC、ADC、ADC 和热点 ROI 平均 ADC。ADC 的 AUC 显著高于热点 ROI 基于 ADC(0.977 比 0.797,=0.036)。

结论

与常用的热点 ROI 基于 ADC 测量相比,ADC 图的直方图分析可以提高胸腺癌与淋巴瘤的鉴别性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8514/5840066/be837147b615/kjr-19-358-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验