Suppr超能文献

基于表观弥散系数图的全肿瘤直方图分析鉴别鼻咽原发灶良恶性肿瘤。

Differentiation between nasopharyngeal carcinoma and lymphoma at the primary site using whole-tumor histogram analysis of apparent diffusion coefficient maps.

机构信息

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, ADD: 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.

Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.

出版信息

Radiol Med. 2020 Jul;125(7):647-653. doi: 10.1007/s11547-020-01152-8. Epub 2020 Feb 18.

Abstract

INTRODUCTION

To determine the value of whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in differentiating nasopharyngeal carcinoma (NPC) from lymphoma (NPL) at the primary site METHOD AND MATERIALS: One hundred forty-seven patients with nasopharyngeal tumors (89 NPCs and 38 NPLs) who had undergone magnetic resonance imaging (MRI) and diffusion-weighted imaging were retrospectively analyzed. ADC histogram-derived parameters were compared between the NPC and NPL groups by using the Mann-Whitney U test. Receiver operating characteristic (ROC) curves of the histogram parameters were plotted for diagnostic accuracy. Sensitivity and specificity were calculated for each histogram parameter.

RESULTS

In whole-tumor histogram analysis, the mean, median, and 10th and 25th percentiles of ADC were all significantly higher in NPC than NPL (P = 0.045, P = 0.035, P = 0.005, and P = 0.016, respectively). Uniformity was significantly higher in NPC than NPL (P = 0.001). Skewness was significantly lower in NPC than NPL (P = 0.039). For the conventional ROI-based method, ADC values were significantly higher in NPC than in NPL (P = 0.009). The ROC curve analysis showed that uniformity yielded the largest area under the curve (AUC = 0.768) for differentiating NPC from NPL among all ADC metrics, followed by 10th percentiles of ADC (AUC = 0.725); sensitivity and specificity were 76.5% and 71.4%, respectively.

CONCLUSION

Whole-tumor histogram analysis of ADC maps could be helpful for differentiating NPC from NPL.

摘要

介绍

为了确定表观扩散系数(ADC)图的全肿瘤直方图分析在鉴别鼻咽部原发肿瘤中的鼻咽癌(NPC)与淋巴瘤(NPL)的价值。

方法与材料

回顾性分析了 147 例鼻咽部肿瘤(89 例 NPC 和 38 例 NPL)患者,这些患者均接受了磁共振成像(MRI)和弥散加权成像检查。采用 Mann-Whitney U 检验比较 NPC 组和 NPL 组的 ADC 直方图衍生参数。绘制直方图参数的受试者工作特征(ROC)曲线,以评估诊断准确性。计算每个直方图参数的灵敏度和特异性。

结果

在全肿瘤直方图分析中,NPC 的平均 ADC 值、中位数 ADC 值、10 百分位 ADC 值和 25 百分位 ADC 值均明显高于 NPL(P=0.045、P=0.035、P=0.005 和 P=0.016)。NPC 的均匀度明显高于 NPL(P=0.001)。NPC 的偏度明显低于 NPL(P=0.039)。对于传统 ROI 基于方法,NPC 的 ADC 值明显高于 NPL(P=0.009)。ROC 曲线分析表明,在所有 ADC 指标中,均匀度对鉴别 NPC 与 NPL 的曲线下面积(AUC)最大(AUC=0.768),其次是 ADC 的 10 百分位(AUC=0.725);灵敏度和特异性分别为 76.5%和 71.4%。

结论

ADC 图的全肿瘤直方图分析有助于鉴别 NPC 与 NPL。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验