Suppr超能文献

结构化语义知识可以从预测儿童导向言语中的单词序列中自动浮现。

Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech.

作者信息

Huebner Philip A, Willits Jon A

机构信息

Interdepartmental Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States.

Department of Psychology, University of California, Riverside, Riverside, CA, United States.

出版信息

Front Psychol. 2018 Feb 22;9:133. doi: 10.3389/fpsyg.2018.00133. eCollection 2018.

Abstract

Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary "deep learning" approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0-3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system.

摘要

先前的研究表明,分布学习机制可能有助于语义知识的习得。然而,分布学习机制、统计学习以及当代的“深度学习”方法都受到了批评,因为它们无法学习许多人认为语义知识习得所需的那种抽象和结构化的知识。在本文中,我们表明,在针对儿童的有噪声自然语音上进行训练的循环神经网络,实际上确实学习到了看似抽象和结构化的知识。我们训练了两种类型的循环神经网络(简单循环网络和长短期记忆网络),以预测针对0至3岁儿童的500万字语音语料库中的单词序列,并评估它们习得的语义知识。我们发现,学习到的内部表征正在编码各种抽象的语法和语义特征,这些特征有助于预测单词序列。从相似性结构的角度评估语义知识的组织,我们在两个模型中都发现了出现的类别和层次结构的证据。我们发现长短期记忆网络(LSTM)和简单循环网络(SRN)都在学习非常相似的表征类型,但在定量评估中,LSTM取得了更高的性能水平。我们还在相同的输入上训练了一个非循环神经网络Skip-gram,以将我们的结果与机器学习中的最新技术进行比较。我们发现Skip-gram取得了与LSTM相对相似的性能,但与分类关系相比,它更多地是从主题角度来表征单词,我们也给出了可能是这种情况的原因。我们的研究结果表明,一个为预测自然语言中的顺序依赖性而推导抽象、分布式表征的学习系统,可能会为发展中的语义系统的许多属性的出现提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c91/5827184/08a23b0f02ec/fpsyg-09-00133-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验