Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Science. 2011 Mar 11;331(6022):1279-85. doi: 10.1126/science.1192788.
In coming to understand the world-in learning concepts, acquiring language, and grasping causal relations-our minds make inferences that appear to go far beyond the data available. How do we do it? This review describes recent approaches to reverse-engineering human learning and cognitive development and, in parallel, engineering more humanlike machine learning systems. Computational models that perform probabilistic inference over hierarchies of flexibly structured representations can address some of the deepest questions about the nature and origins of human thought: How does abstract knowledge guide learning and reasoning from sparse data? What forms does our knowledge take, across different domains and tasks? And how is that abstract knowledge itself acquired?
为了理解世界——学习概念、掌握语言和理解因果关系——我们的大脑进行了推断,这些推断似乎远远超出了可用的数据。我们是如何做到的?这篇综述描述了最近用于反向工程人类学习和认知发展的方法,并同时设计了更像人类的机器学习系统。能够对灵活结构表示的层次结构进行概率推断的计算模型,可以解决关于人类思维的本质和起源的一些最深刻的问题:抽象知识如何指导从稀疏数据中进行学习和推理?我们的知识在不同领域和任务中呈现出什么形式?以及这种抽象知识本身是如何获得的?