Suppr超能文献

揭示膀胱癌的分子特征。

Unmasking molecular profiles of bladder cancer.

机构信息

Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.

Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

Investig Clin Urol. 2018 Mar;59(2):72-82. doi: 10.4111/icu.2018.59.2.72. Epub 2018 Feb 1.

Abstract

Precision medicine is designed to tailor treatments for individual patients by factoring in each person's specific biology and mechanism of disease. This paradigm shifted from a "one size fits all" approach to "personalized and precision care" requires multiple layers of molecular profiling of biomarkers for accurate diagnosis and prediction of treatment responses. Intensive studies are also being performed to understand the complex and dynamic molecular profiles of bladder cancer. These efforts involve looking bladder cancer mechanism at the multiple levels of the genome, epigenome, transcriptome, proteome, lipidome, metabolome etc. The aim of this short review is to outline the current technologies being used to investigate molecular profiles and discuss biomarker candidates that have been investigated as possible diagnostic and prognostic indicators of bladder cancer.

摘要

精准医学旨在通过考虑每个患者的特定生物学和疾病机制,为个体患者量身定制治疗方案。这种从“一刀切”方法向“个性化和精准医疗”的范式转变,需要对生物标志物进行多层次的分子谱分析,以实现准确的诊断和治疗反应预测。目前也正在进行深入研究,以了解膀胱癌的复杂和动态分子谱。这些努力包括从基因组、表观基因组、转录组、蛋白质组、脂质组、代谢组等多个层面研究膀胱癌的机制。本文综述的目的是概述目前用于研究分子谱的技术,并讨论已作为膀胱癌潜在诊断和预后标志物的候选生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bf6/5840121/ea9e4392a268/icu-59-72-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验