Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Av. Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina.
Centro de Ecología Aplicada (CEA), Suecia 3304, 56-2-2741872, Ñuñoa, Santiago, Chile.
Microb Ecol. 2018 Oct;76(3):695-705. doi: 10.1007/s00248-018-1159-3. Epub 2018 Mar 8.
Biofilms, microbial mats, and microbialites dwell under highly limiting conditions (high salinity, extreme aridity, pH, and elevated arsenic concentration) in the Andean Puna. Only recent pioneering studies have described the microbial diversity of different Altiplano lakes and revealed their unexpectedly diverse microbial communities. Arsenic metabolism is proposed to be an ancient mechanism to obtain energy by microorganisms. Members of Bacteria and Archaea are able to exploit arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. Only six aioAB sequences coding for arsenite oxidase and three arrA sequences coding for arsenate reductase from haloarchaea were previously deposited in the NCBI database. However, no experimental data on their expression and function has been reported. Recently, our working group revealed the prevalence of haloarchaea in a red biofilm from Diamante Lake and microbial mat from Tebenquiche Lake using a metagenomics approach. Also, a surprisingly high abundance of genes used for anaerobic arsenate respiration (arr) and arsenite oxidation (aio) was detected in the Diamante's metagenome. In order to study in depth the role of arsenic in these haloarchaeal communities, in this work, we obtained 18 haloarchaea belonging to the Halorubrum genus, tolerant to arsenic. Furthermore, the identification and expression analysis of genes involved in obtaining energy from arsenic compounds (aio and arr) showed that aio and arr partial genes were detected in 11 isolates, and their expression was verified in two selected strains. Better growth of two isolates was obtained in presence of arsenic compared to control. Moreover, one of the isolates was able to oxidize As[III]. The confirmation of the oxidation of arsenic and the transcriptional expression of these genes by RT-PCR strongly support the hypothesis that the arsenic can be used in bioenergetics processes by the microorganisms flourishing in these environments.
生物膜、微生物垫和微生物岩生活在安第斯普纳(Andean Puna)的高限制条件下(高盐度、极端干旱、pH 值和高砷浓度)。只有最近的开拓性研究才描述了不同高原湖泊的微生物多样性,并揭示了它们出人意料的多样化微生物群落。砷代谢被认为是微生物获取能量的古老机制。细菌和古菌的成员能够利用砷作为厌氧砷酸盐呼吸或砷酸盐化能自养生长的生物能底物。以前在 NCBI 数据库中仅存入了六个编码亚砷酸盐氧化酶的 aioAB 序列和三个编码砷酸盐还原酶的 arrA 序列的古菌。然而,尚未报告其表达和功能的实验数据。最近,我们的工作组使用宏基因组学方法揭示了 haloarchaea 在 Diamante 湖的红色生物膜和 Tebenquiche 湖的微生物垫中的普遍性。此外,在 Diamante 的宏基因组中还检测到用于厌氧砷酸盐呼吸(arr)和亚砷酸盐氧化(aio)的基因的惊人高丰度。为了深入研究砷在这些 haloarchaea 群落中的作用,在这项工作中,我们获得了 18 株耐砷的属于 Halorubrum 属的 haloarchaea。此外,对涉及从砷化合物中获取能量的基因(aio 和 arr)的鉴定和表达分析表明,在 11 个分离株中检测到 aio 和 arr 部分基因,并且在两个选定的菌株中验证了其表达。与对照相比,在存在砷的情况下,两个分离株的生长更好。此外,其中一个分离株能够氧化 As[III]。砷的氧化和这些基因的 RT-PCR 转录表达的确认强烈支持了这样的假设,即在这些环境中繁荣的微生物可以将砷用于生物能过程。