Suppr超能文献

比较一大组药物的分布容积的机制预测和临床前预测。

Comparing Mechanistic and Preclinical Predictions of Volume of Distribution on a Large Set of Drugs.

机构信息

Department of Bioengineering and Therapeutic Sciences, School of Pharmacy and Medicine, University of California San Francisco, San Francisco, California, USA.

Drug Metabolism & Pharmacokinetics Genentech, Inc, 1 DNA Way, South San Francisco, California, 94080-4990, USA.

出版信息

Pharm Res. 2018 Mar 8;35(4):87. doi: 10.1007/s11095-018-2360-2.

Abstract

PURPOSE

Volume of distribution at steady state (Vd) is a fundamental pharmacokinetic (PK) parameter driven predominantly by passive processes and physicochemical properties of the compound. Human Vd can be estimated using in silico mechanistic methods or empirically scaled from Vd values obtained from preclinical species. In this study the accuracy and the complementarity of these two approaches are analyzed leveraging a large data set (over 150 marketed drugs).

METHODS

For all the drugs analyzed in this study experimental in vitro measurements of LogP, plasma protein binding and pKa are used as input for the mechanistic in silico model to predict human Vd. The software used for predicting human tissue partition coefficients and Vd based on the method described by Rodgers and Rowland is made available as supporting information.

RESULTS

This assessment indicates that overall the in silico mechanistic model presented by Rodgers and Rowland is comparably accurate or superior to empirical approaches based on the extrapolation of in vivo data from preclinical species.

CONCLUSIONS

These results illustrate the great potential of mechanistic in silico models to accurately predict Vd in humans. This in silico method does not rely on in vivo data and is, consequently, significantly time and resource sparing. The success of this in silico model further suggests that reasonable predictability of Vd in preclinical species could be obtained by a similar process.

摘要

目的

稳态分布容积(Vd)是一个基本的药代动力学(PK)参数,主要由化合物的被动过程和物理化学性质驱动。可以使用基于计算的机制方法或根据从临床前物种获得的 Vd 值进行经验性缩放来估计人体 Vd。在这项研究中,利用大型数据集(超过 150 种上市药物)分析了这两种方法的准确性和互补性。

方法

对于本研究中分析的所有药物,均使用实验体外测量的 LogP、血浆蛋白结合率和 pKa 作为输入,以预测人体 Vd。用于预测人体组织分配系数和基于 Rodgers 和 Rowland 所述方法的 Vd 的软件可作为支持信息提供。

结果

这项评估表明,总体而言,Rodgers 和 Rowland 提出的基于计算的机制模型与基于从临床前物种推断体内数据的经验方法相比,具有相当的准确性或优越性。

结论

这些结果说明了基于计算的机制模型在准确预测人体 Vd 方面的巨大潜力。该基于计算的方法不依赖于体内数据,因此大大节省了时间和资源。该基于计算的模型的成功进一步表明,通过类似的过程可以获得临床前物种中 Vd 的合理可预测性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验