Suppr超能文献

在大型联合研究中利用人类连接组学数据:基于功能磁共振成像的脑网络图在不同地点、不同时段和不同范式下的可推广性。

Toward Leveraging Human Connectomic Data in Large Consortia: Generalizability of fMRI-Based Brain Graphs Across Sites, Sessions, and Paradigms.

机构信息

Department of Psychology, Yale University, New Haven, CT, USA.

Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

Cereb Cortex. 2019 Mar 1;29(3):1263-1279. doi: 10.1093/cercor/bhy032.

Abstract

While graph theoretical modeling has dramatically advanced our understanding of complex brain systems, the feasibility of aggregating connectomic data in large imaging consortia remains unclear. Here, using a battery of cognitive, emotional and resting fMRI paradigms, we investigated the generalizability of functional connectomic measures across sites and sessions. Our results revealed overall fair to excellent reliability for a majority of measures during both rest and tasks, in particular for those quantifying connectivity strength, network segregation and network integration. Processing schemes such as node definition and global signal regression (GSR) significantly affected resulting reliability, with higher reliability detected for the Power atlas (vs. AAL atlas) and data without GSR. While network diagnostics for default-mode and sensori-motor systems were consistently reliable independently of paradigm, those for higher-order cognitive systems were reliable predominantly when challenged by task. In addition, based on our present sample and after accounting for observed reliability, satisfactory statistical power can be achieved in multisite research with sample size of approximately 250 when the effect size is moderate or larger. Our findings provide empirical evidence for the generalizability of brain functional graphs in large consortia, and encourage the aggregation of connectomic measures using multisite and multisession data.

摘要

虽然图论建模极大地促进了我们对复杂大脑系统的理解,但在大型成像联盟中聚合连接组数据的可行性仍不清楚。在这里,我们使用一系列认知、情感和静息 fMRI 范式,研究了功能连接组学测量在不同地点和不同时间的可推广性。我们的研究结果表明,在休息和任务期间,大多数测量方法的可靠性总体上是公平到优秀的,特别是那些量化连接强度、网络隔离和网络集成的方法。处理方案,如节点定义和全局信号回归(GSR),显著影响了可靠性,对于使用 Power 图谱(与 AAL 图谱相比)和不使用 GSR 的数据,检测到了更高的可靠性。虽然默认模式和感觉运动系统的网络诊断独立于范式始终是可靠的,但当受到任务挑战时,高阶认知系统的网络诊断主要是可靠的。此外,根据我们目前的样本,并考虑到观察到的可靠性,当效应量中等或更大时,使用大约 250 个样本的多站点研究可以获得令人满意的统计效力。我们的研究结果为大型联盟中大脑功能图谱的可推广性提供了经验证据,并鼓励使用多站点和多时间点数据聚合连接组学测量。

相似文献

引用本文的文献

2
Brain network dynamics predict moments of surprise across contexts.脑网络动力学可预测不同情境下的意外时刻。
Nat Hum Behav. 2025 Mar;9(3):554-568. doi: 10.1038/s41562-024-02017-0. Epub 2024 Dec 23.
7
The roles, challenges, and merits of the p value.P值的作用、挑战及优点。
Patterns (N Y). 2023 Dec 8;4(12):100878. doi: 10.1016/j.patter.2023.100878.
10
Early development of the functional brain network in newborns.新生儿功能性大脑网络的早期发育。
Brain Struct Funct. 2023 Sep;228(7):1725-1739. doi: 10.1007/s00429-023-02681-4. Epub 2023 Jul 26.

本文引用的文献

8
The global signal in fMRI: Nuisance or Information?功能磁共振成像中的全局信号:干扰因素还是信息?
Neuroimage. 2017 Apr 15;150:213-229. doi: 10.1016/j.neuroimage.2017.02.036. Epub 2017 Feb 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验